循环肿瘤细胞
化学
单细胞分析
气泡
细胞
转移
生物医学工程
癌症
内科学
计算机科学
医学
生物化学
并行计算
作者
Hailong Yu,Chenjie Yang,Qunfei Tai,Mingxia Gao,Xiangmin Zhang
标识
DOI:10.1021/acs.analchem.2c04994
摘要
Circulating tumor cells (CTCs) are crucial in tumor progression and metastasis, but the knowledge of their roles grows slowly at single-cell levels. Characterizing the rarity and fragility of CTCs by nature, highly stable and efficient single-CTC sampling methods are still lacking, which impedes the development of single-CTC analysis. Herein, an improved, capillary-based single-cell sampling (SiCS) method, the so-called bubble-glue single-cell sampling (bubble-glue SiCS), is introduced. Benefiting from the characteristic that the cells tend to adhere to air bubbles in the solution, single cells can be sampled with bubbles as low as 20 pL with a self-designed microbubble-volume-controlled system. Benefiting from the excellent maneuverability, single CTCs are sampled directly from 10 μL volume of real blood samples after fluorescent labeling. Meanwhile, over 90% of the CTCs obtained survived and well proliferated after the bubble-glue SiCS process, which showed considerable superiority for downstream single-CTC profiling. Furthermore, a highly metastatic breast cancer model of the 4T1 cell line in vivo was employed for the real blood sample analysis. Increases in CTC numbers were observed during the tumor progression process, and significant heterogeneities among individual CTCs were discovered. In all, we propose a novel avenue for target SiCS and provide an alternative technique route for CTC separation and analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI