Research on digital twin modeling method of transformer temperature field based on POD

伽辽金法 变压器 有限元法 计算机科学 应用数学 电子工程 控制理论(社会学) 数学 电压 工程类 电气工程 结构工程 人工智能 控制(管理)
作者
Liang Wang,Xueqing Dong,Lantao Jing,Tong Li,Zhao Hai,Bin Zhang
出处
期刊:Energy Reports [Elsevier]
卷期号:9: 299-307 被引量:18
标识
DOI:10.1016/j.egyr.2023.03.010
摘要

For the calculation of transient fluid–solid coupling temperature field of transformer, the traditional Galerkin finite element full order model has the defect that the calculation time is up to hours-level, which is difficult to meet the timeliness requirements of the digital twin model. Firstly, the implementation architecture of transformer digital twin based on IoT is established, and the necessity of multiphysical field simulation and model reduction technology for building the digital twin model is introduced. Then, based on the method of transformer digital twin implementation,it is proposed to combine the proper orthogonal decomposition (POD) with the finite element (FE) to establish the Galerkin FE full order model for the governing equation of the transient temperature field, the reduced order mode composed of the first several bases is intercepted to build the reduced order model of transient fluid–solid coupling temperature field. Finally, the POD reduced order model is applied to calculate the temperature rise of a transformer. According to the actual transformer temperature rise test, the temperature values of different measuring points are selected to compare the calculation error and time of the reduced order model and the full order model. The results show that the error between the third order model and full order model meets the criterion of POD truncation error, and the calculation time is shortened by 192 times, which can meet the seconds-level calculation requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助Eileen采纳,获得10
刚刚
Lucas应助Anne采纳,获得10
刚刚
刚刚
今后应助woodword采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
smin发布了新的文献求助10
3秒前
3秒前
斯文败类应助tjfwg采纳,获得10
3秒前
orixero应助adminual采纳,获得10
3秒前
李征驳回了MY应助
3秒前
Dr_ZHONG完成签到 ,获得积分10
3秒前
闾丘剑封发布了新的文献求助30
4秒前
4秒前
5秒前
lyxxll发布了新的文献求助10
5秒前
6秒前
小童完成签到,获得积分20
7秒前
慕青应助Orochimaru采纳,获得10
7秒前
dd发布了新的文献求助10
7秒前
8秒前
完美世界应助郁金香采纳,获得10
8秒前
ding应助xy采纳,获得10
9秒前
9秒前
9秒前
郭1107发布了新的文献求助30
9秒前
10秒前
10秒前
芋圆完成签到,获得积分10
10秒前
soda发布了新的文献求助10
10秒前
10秒前
852应助Mirale采纳,获得10
10秒前
dd发布了新的文献求助10
11秒前
彩虹糖发布了新的文献求助10
12秒前
深情安青应助俊逸书琴采纳,获得10
12秒前
小童发布了新的文献求助10
13秒前
mochi发布了新的文献求助10
13秒前
烧饼拌糖完成签到,获得积分10
13秒前
123456完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666560
求助须知:如何正确求助?哪些是违规求助? 4882496
关于积分的说明 15117625
捐赠科研通 4825585
什么是DOI,文献DOI怎么找? 2583523
邀请新用户注册赠送积分活动 1537653
关于科研通互助平台的介绍 1495895