底栖区
环境科学
生态学
群落结构
分水岭
生态系统
旱季
无脊椎动物
底栖生物
空间变异性
地理
生物
统计
数学
机器学习
计算机科学
作者
Zaoli Yang,Shufeng He,Tao Feng,Yuqing Lin,Mo Chen,Qinyuan Li,Qiuwen Chen
标识
DOI:10.1016/j.jenvman.2023.118027
摘要
Exploring the response between benthic community changes and environmental variables has significance for restoring the health of river ecosystems. However, little is known of the impact on communities of interactions between multiple environmental factors, and frequent changes in the flow of mountain rivers are different from those in the flow of plain river networks, which also impact differently the benthic community. Thus, there is a need for research on the response of benthic communities to environmental changes in mountain rivers under flow regulation. In this study, we collected samples from the Jiangshan River in the dry season (November 2021) and the wet season (July 2022) to investigate the aquatic ecology and benthic macroinvertebrate communities in the watershed. Multi-dimension analyses were used to analyze the spatial variation in the community structure and response of benthic macroinvertebrates to multiple environmental factors. In addition, the explanatory power of the interaction between multiple factors on the spatial variation of communities, and the distribution characteristics of benthic community and their causes were investigated. The results showed that herbivores are the most abundant forms in the benthic community of mountain rivers. The structure of benthic community in Jiangshan River was significantly affected by water quality and substrate, whereas the overall community structure was affected by river flow conditions. Furthermore, nitrite nitrogen and ammonium nitrogen were the key environmental factors impacting the spatial heterogeneity of communities during the dry and wet season, respectively. Meanwhile, the interaction between these environmental factors showed a synergistic effect, enhancing the influence of these environmental factors on community structure. Thus, controlling urban and agricultural pollution and releasing ecological flow would be effective strategies to improve benthic biodiversity. Our study showed that using the interaction of environmental factors was a suitable way to evaluate the association between environmental variables and variation in benthic macroinvertebrate community structure in river ecosystems.
科研通智能强力驱动
Strongly Powered by AbleSci AI