Phenome-wide associations of human aging uncover sex-specific dynamics

现象 动力学(音乐) 生物 心理学 遗传学 教育学 基因 表型
作者
Lee Reicher,Noam Bar,Anastasia Godneva,Yotam Reisner,Liron Zahavi,Nir Shahaf,Raja Dhir,Adina Weinberger,Eran Segal
出处
期刊:Nature Aging
标识
DOI:10.1038/s43587-024-00734-9
摘要

Aging varies significantly among individuals of the same chronological age, indicating that biological age (BA), estimated from molecular and physiological biomarkers, may better reflect aging. Prior research has often ignored sex-specific differences in aging patterns and mainly focused on aging biomarkers from a single data modality. Here we analyze a deeply phenotyped longitudinal cohort (10K project, Israel) of 10,000 healthy individuals aged 40–70 years that includes clinical, physiological, behavioral, environmental and multiomic parameters. Follow-up visits are scheduled every 2 years for a total of 25 years. We devised machine learning models of chronological age and computed biological aging scores that represented diverse physiological systems, revealing different aging patterns among sexes. Higher BA scores were associated with a higher prevalence of age-related medical conditions, highlighting the clinical relevance of these scores. Our analysis revealed system-specific aging dynamics and the potential of deeply phenotyped cohorts to accelerate improvements in our understanding of chronic diseases. Our findings present a more holistic view of the aging process, and lay the foundation for personalized medical prevention strategies. The authors analyzed data from a deeply phenotyped longitudinal cohort to uncover sex-specific aging patterns. They found that biological age scores, derived from diverse biomarkers, correlate with age-related diseases, providing insights for personalized medical interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助务实大神采纳,获得10
刚刚
Akim应助务实大神采纳,获得10
刚刚
彭于晏应助白云采纳,获得10
刚刚
1秒前
汉堡包应助犹豫不可采纳,获得10
3秒前
4秒前
沙一汀绯闻女友完成签到,获得积分10
5秒前
hitchem发布了新的文献求助10
5秒前
6秒前
7秒前
美好乐松应助Wells采纳,获得10
8秒前
8秒前
英俊的铭应助张张小白采纳,获得10
9秒前
18746005898发布了新的文献求助10
10秒前
11秒前
11秒前
小蘑菇应助benny279采纳,获得10
11秒前
11秒前
13秒前
16秒前
17秒前
包觅风发布了新的文献求助10
17秒前
南瓜完成签到,获得积分10
20秒前
qaqa发布了新的文献求助10
21秒前
熹微发布了新的文献求助10
21秒前
23秒前
23秒前
包觅风完成签到,获得积分10
23秒前
lu完成签到,获得积分10
24秒前
zhanglan完成签到,获得积分10
26秒前
27秒前
深情安青应助完美的彩虹采纳,获得10
29秒前
加油完成签到,获得积分20
29秒前
29秒前
29秒前
星辰大海应助wujingshuai采纳,获得10
29秒前
qwfwe发布了新的文献求助10
30秒前
犹豫不可完成签到,获得积分10
32秒前
刻苦的荆完成签到,获得积分10
33秒前
STZHEN发布了新的文献求助10
34秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
2021下半年大理州人民医院招聘试题及答案 1000
大理州人民医院2021上半年(卫生类)人员招聘试题及解析 1000
2023云南大理州事业单位招聘专业技术人员医疗岗162人笔试历年典型考题及考点剖析附带答案详解 1000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3113948
求助须知:如何正确求助?哪些是违规求助? 2764174
关于积分的说明 7677552
捐赠科研通 2419348
什么是DOI,文献DOI怎么找? 1284446
科研通“疑难数据库(出版商)”最低求助积分说明 619648
版权声明 599685