Investigating students’ uptake of teacher- and ChatGPT-generated feedback in EFL writing: a comparison study

论辩的 纠正性反馈 同行反馈 感知 背景(考古学) 心理学 偏爱 数学教育 质量(理念) 英语作为外语 第二语言写作 计算机科学 教育学 第二语言 语言学 哲学 古生物学 认识论 神经科学 经济 生物 微观经济学
作者
Shaoyan Zou,Kai Guo,Jun Wang,Yu Liu
出处
期刊:Computer Assisted Language Learning [Routledge]
卷期号:: 1-30
标识
DOI:10.1080/09588221.2024.2447279
摘要

While previous studies have compared English as a foreign language (EFL) students' perceptions of teacher- and ChatGPT-generated feedback on their writing, there remains a gap in understanding how students incorporate feedback from these sources into their revisions. To address this, our study investigated how students use feedback from teachers and ChatGPT in the context of argumentative writing. Twenty Chinese undergraduate students participated in the study, composing argumentative essays, receiving feedback from both teachers and ChatGPT, and revising their essays accordingly. We analyzed their revisions to assess their engagement with the feedback and the appropriateness of their revisions. Additionally, we collected and analyzed their responses to a questionnaire that explored their perceptions and preferences regarding teacher feedback and ChatGPT feedback. The findings revealed that students displayed higher levels of engagement and achieved greater accuracy in their revisions when using teacher feedback. However, an intriguing pattern emerged, indicating that students effectively addressed language and content issues with teacher feedback but showed a particular inclination towards successfully integrating feedback on organization from ChatGPT. Furthermore, the questionnaire results indicated a general preference for teacher feedback while recognizing the unique strengths of ChatGPT feedback, particularly in relation to organization. These findings underscore the potential of using ChatGPT feedback as a complementary resource to teacher feedback. The study demonstrated how these two feedback sources can be synergistically aligned to enhance the overall quality of feedback in EFL writing, promoting a more integrated approach to improve the teaching efficacy of EFL writing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
sasa完成签到,获得积分10
3秒前
4秒前
4秒前
Paris发布了新的文献求助10
5秒前
IRONY发布了新的文献求助10
5秒前
5秒前
5秒前
亦辰发布了新的文献求助10
9秒前
EdinLiv发布了新的文献求助30
9秒前
overmind发布了新的文献求助10
10秒前
cece发布了新的文献求助10
11秒前
14秒前
西卡完成签到,获得积分10
15秒前
15秒前
EdinLiv完成签到,获得积分10
15秒前
16秒前
18秒前
小蘑菇应助阳光的豁采纳,获得10
19秒前
19秒前
小明同学发布了新的文献求助10
19秒前
JHcHuN发布了新的文献求助10
21秒前
22秒前
核桃发布了新的文献求助10
23秒前
bkagyin应助Re采纳,获得10
24秒前
24秒前
科研通AI5应助科学家采纳,获得10
24秒前
打打应助doujuanjuan采纳,获得10
25秒前
桂桂发布了新的文献求助10
26秒前
26秒前
27秒前
28秒前
30秒前
30秒前
在水一方应助adeno采纳,获得10
31秒前
ldd发布了新的文献求助10
31秒前
32秒前
32秒前
笑傲完成签到,获得积分10
33秒前
cece完成签到,获得积分10
35秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737566
求助须知:如何正确求助?哪些是违规求助? 3281296
关于积分的说明 10024292
捐赠科研通 2998016
什么是DOI,文献DOI怎么找? 1644966
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794