衰老
生物
染色质免疫沉淀
细胞生物学
转录因子
拟南芥
叶绿素
突变体
基因表达
基因
植物
生物化学
发起人
作者
Mengting Sun,Yan Y,Feng Han,Yuxin Zhao,Bisi Chen,Xing Cui,Li Chun,Bo Yang,Yiting Zhao,Yuan‐Qing Jiang
摘要
Leaf senescence is the final stage of plant growth and development, characterized by chlorophyll degradation, organelle disintegration, and nutrient redistribution and utilization. This stage involves a complex and precise regulatory network, and the underlying mechanisms are not fully understood. Oilseed rape (Brassica napus L.) is one of the most important oil crops in China and globally. Therefore, mining and studying the key factors modulating leaf senescence and abscission in oilseed rape is of great importance to improve its yielding and nutrient use efficiency. In this study, we report that BnaMYB78 positively regulates leaf senescence in oilseed rape. As a transcriptional activator located in the nucleus, BnaMYB78 can bind to the SMRE7 (A/G)CC(T/A)AA(C/T) cis-element in vitro and positively regulate the expression of BnaPBS3, BnaMC9, and BnaNYC1 in oilseed rape. Overexpression of BnaMYB78 leads to chlorophyll degradation and premature leaf senescence in both Arabidopsis thaliana and oilseed rape. During this process, the expression of several genes associated with salicylic acid (SA) synthesis, chlorophyll metabolism, and senescence-associated genes (SAGs) was upregulated, including BnaPPH, BnaSAG14, BnaMC9, BnaPBS3, BnaNYC1, and BnaICS1, which facilitate the progression of programmed cell death (PCD). Further analyses demonstrated that BnaMYB78 activates the promoter activities of BnaMC9, BnaPBS3, and BnaNYC1 in a dual-luciferase reporter assay. Electrophoretic mobility shift assays (EMSAs) and chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) assays revealed that BnaMYB78 directly binds to the promoter regions of these downstream target genes. In summary, our data demonstrate that BnaMYB78 modulates cell death and leaf senescence.
科研通智能强力驱动
Strongly Powered by AbleSci AI