Scalable emulation of protein equilibrium ensembles with generative deep learning

仿真 可扩展性 生成语法 计算机科学 人工智能 深度学习 生成模型 机器学习 心理学 社会心理学 数据库
作者
Sarah Lewis,Tim Hempel,José Jiménez-Luna,Michael Gastegger,Yu Xie,Andrew Y. K. Foong,Víctor García Satorras,Osama Abdin,Bastiaan S. Veeling,Iryna Zaporozhets,Yaoyi Chen,Soojung Yang,Arne Schneuing,Jigyasa Nigam,Federico Barbero,Vincent Stimper,Andrew M. Campbell,Jason Yim,Marten Lienen,Yu Shi,Shuxin Zheng,Hannes Schulz,Usman Munir,Cecilia Clementi,Frank Noé
标识
DOI:10.1101/2024.12.05.626885
摘要

Following the sequence and structure revolutions, predicting the dynamical mechanisms of proteins that implement biological function remains an outstanding scientific challenge. Several experimental techniques and molecular dynamics (MD) simulations can, in principle, determine conformational states, binding configurations and their probabilities, but suffer from low throughput. Here we develop a Biomolecular Emulator (BioEmu), a generative deep learning system that can generate thousands of statistically independent samples from the protein structure ensemble per hour on a single graphical processing unit. By leveraging novel training methods and vast data of protein structures, over 200 milliseconds of MD simulation, and experimental protein stabilities, BioEmu's protein ensembles represent equilibrium in a range of challenging and practically relevant metrics. Qualitatively, BioEmu samples many functionally relevant conformational changes, ranging from formation of cryptic pockets, over unfolding of specific protein regions, to large-scale domain rearrangements. Quantitatively, BioEmu samples protein conformations with relative free energy errors around 1 kcal/mol, as validated against millisecond-timescale MD simulation and experimentally-measured protein stabilities. By simultaneously emulating structural ensembles and thermodynamic properties, BioEmu reveals mechanistic insights, such as the causes for fold destabilization of mutants, and can efficiently provide experimentally-testable hypotheses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
judy007完成签到,获得积分10
1秒前
科研1发布了新的文献求助20
1秒前
AOI0504完成签到,获得积分10
1秒前
ZM发布了新的文献求助10
2秒前
丰富雅容完成签到 ,获得积分10
2秒前
斯文谷秋发布了新的文献求助30
2秒前
Aurora的努力日记完成签到,获得积分10
2秒前
栗子发布了新的文献求助10
3秒前
开朗的丸子完成签到,获得积分10
4秒前
Potatooo发布了新的文献求助10
4秒前
5秒前
斑其发布了新的文献求助10
5秒前
加油呀发布了新的文献求助10
6秒前
6秒前
LL完成签到,获得积分10
6秒前
传奇3应助mmczj采纳,获得10
6秒前
Huang发布了新的文献求助10
6秒前
MuziLeeee给MuziLeeee的求助进行了留言
6秒前
6秒前
niuyangyang完成签到,获得积分10
7秒前
8秒前
8秒前
包容的水香完成签到,获得积分20
8秒前
pluto应助夹心采纳,获得10
9秒前
9秒前
cai关闭了cai文献求助
9秒前
躺平的搬砖人完成签到,获得积分10
9秒前
一一应助gsc采纳,获得10
10秒前
yywgin发布了新的文献求助10
10秒前
科研怪发布了新的文献求助10
10秒前
我是老大应助XA采纳,获得10
10秒前
wu完成签到,获得积分10
10秒前
10秒前
11秒前
科研通AI2S应助123采纳,获得10
11秒前
星辰大海应助直率的醉冬采纳,获得10
11秒前
12秒前
12秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232433
求助须知:如何正确求助?哪些是违规求助? 2879364
关于积分的说明 8210667
捐赠科研通 2546680
什么是DOI,文献DOI怎么找? 1376287
科研通“疑难数据库(出版商)”最低求助积分说明 647594
邀请新用户注册赠送积分活动 622856