Preictal period optimization for deep learning-based epileptic seizure prediction

发作性 计算机科学 脑电图 人工智能 癫痫 公制(单位) 癫痫发作 学习曲线 机器学习 分类器(UML) 模式识别(心理学) 神经科学 心理学 运营管理 经济 操作系统
作者
Petros Koutsouvelis,Bartłomiej Chybowski,Alfredo Gonzalez-Sulser,Shima Abdullateef,Javier Escudero
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/ad9ad0
摘要

Abstract Objective: Accurate seizure prediction could prove critical for improving patient safety and quality of life in drug-resistant epilepsy. While deep learning-based approaches have shown promising performance using scalp electroencephalogram (EEG) signals, the incomplete understanding and variability of the preictal state imposes challenges in identifying the optimal preictal period (OPP) for labeling the EEG segments. This study introduces novel measures to capture model behavior under different preictal definitions and proposes a data-driven methodology to identify the OPP. &#xD;&#xD;Approach: We employed a competent subject-specific CNN-Transformer model (Area Under the Curve [AUC] of 99.35\% and F1-score of 97.46\%) to accurately detect preictal EEG segments using the open-access CHB-MIT dataset. To capture the temporal dynamics of the model's predictions, we fitted a sigmoidal curve to the model outputs obtained from uninterrupted multi-hour EEG recordings prior to seizure onset. From this fitted curve, we derived key performance measures reflecting the timing of predictions, including classifier convergence, average error, output stability, and the transition between interictal and preictal states. These measures were then combined to synthesize the Continuous Input-Output Performance Ratio (CIOPR), a novel metric designed to suggest the OPP for each patient.&#xD;&#xD;Significance: The newly developed metrics demonstrate that varying the preictal period significantly (p<0.001) impacts the timing of predictions in ways not captured by conventional accuracy-related metrics. Understanding this impact is essential for developing intelligent systems tailored to individual patient needs and for underlining practical limitations in detecting the preictal period in real-world clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
hohn完成签到,获得积分10
2秒前
3秒前
dalian完成签到,获得积分10
3秒前
nzxnzx发布了新的文献求助10
3秒前
3秒前
Exc完成签到,获得积分0
4秒前
ddd完成签到,获得积分10
4秒前
祖冰绿完成签到,获得积分20
4秒前
金22完成签到,获得积分10
5秒前
Nicole完成签到 ,获得积分10
5秒前
优雅的猪完成签到,获得积分10
6秒前
因为我从来是那样完成签到,获得积分10
6秒前
6秒前
诗图完成签到,获得积分10
6秒前
所所应助杜兰特工队采纳,获得30
7秒前
小二郎应助猪猪hero采纳,获得10
7秒前
漫步云端完成签到,获得积分10
7秒前
彭于晏应助二狗家的春天采纳,获得10
7秒前
木子发布了新的文献求助10
8秒前
8秒前
8秒前
10秒前
10秒前
zzp完成签到,获得积分10
11秒前
刻苦的幻巧完成签到 ,获得积分10
11秒前
crrrrr完成签到,获得积分10
12秒前
12秒前
zym428完成签到,获得积分10
12秒前
coolkid应助1蓝采纳,获得10
12秒前
znsmaqwdy发布了新的文献求助10
12秒前
周琦发布了新的文献求助10
13秒前
科研通AI2S应助he采纳,获得10
13秒前
13秒前
LTY发布了新的文献求助30
14秒前
14秒前
超级不言发布了新的文献求助20
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650