Development of Deep Learning–Based Virtual Lugol Chromoendoscopy for Superficial Esophageal Squamous Cell Carcinoma

彩色内窥镜 医学 食管鳞状细胞癌 食管癌 食管肿瘤 核医学 内科学 癌症 结直肠癌 结肠镜检查
作者
Yosuke Toya,Sho Suzuki,Yusuke Monno,Ryo Arai,Takahiro Dohmen,Makoto Eizuka,Masatoshi Okutomi,Takayuki Matsumoto
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
标识
DOI:10.1111/jgh.16843
摘要

ABSTRACT Background Lugol chromoendoscopy has been shown to increase the sensitivity of detection of esophageal squamous cell carcinoma (ESCC). We aimed to develop a deep learning–based virtual lugol chromoendoscopy (V‐LCE) method. Methods We developed still V‐LCE images for superficial ESCC using a cycle‐consistent generative adversarial network (CycleGAN). Six endoscopists graded the detection and margins of ESCCs using white‐light endoscopy (WLE), real lugol chromoendoscopy (R‐LCE), and V‐LCE on a five‐point scale ranging from 1 (poor) to 5 (excellent). We also calculated and compared the color differences between cancerous and non‐cancerous areas using WLE, R‐LCE, and V‐LCE. Results Scores for the detection and margins were significantly higher with R‐LCE than V‐LCE (detection, 4.7 vs. 3.8, respectively; p < 0.001; margins, 4.3 vs. 3.0, respectively; p < 0.001). There were nonsignificant trends towards higher scores with V‐LCE than WLE (detection, 3.8 vs. 3.3, respectively; p = 0.089; margins, 3.0 vs. 2.7, respectively; p = 0.130). Color differences were significantly greater with V‐LCE than WLE ( p < 0.001) and with R‐LCE than V‐LCE ( p < 0.001) (39.6 with R‐LCE, 29.6 with V‐LCE, and 18.3 with WLE). Conclusions Our V‐LCE has a middle performance between R‐LCE and WLE in terms of lesion detection, margin, and color difference. It suggests that V‐LCE potentially improves the endoscopic diagnosis of superficial ESCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
凤凰山发布了新的文献求助10
1秒前
1秒前
孔雨珍发布了新的文献求助10
1秒前
淡定的思松应助通~采纳,获得10
2秒前
2秒前
明亮的八宝粥完成签到,获得积分10
2秒前
mayungui发布了新的文献求助10
2秒前
大型海狮完成签到,获得积分10
2秒前
搜集达人应助科研菜鸟采纳,获得10
3秒前
雨天有伞完成签到,获得积分10
3秒前
蕾子发布了新的文献求助10
3秒前
3秒前
zhui发布了新的文献求助10
3秒前
wanci应助jxcandice采纳,获得10
3秒前
factor发布了新的文献求助10
3秒前
4秒前
泊声发布了新的文献求助20
4秒前
narthon完成签到 ,获得积分10
4秒前
梦幻完成签到,获得积分10
4秒前
1604531786完成签到,获得积分10
4秒前
研友_LMNjkn发布了新的文献求助10
5秒前
xiao发布了新的文献求助10
5秒前
ww发布了新的文献求助10
5秒前
6秒前
Olsters发布了新的文献求助10
6秒前
深情安青应助该睡觉啦采纳,获得10
6秒前
6秒前
SEV完成签到,获得积分20
6秒前
愉快迎荷完成签到,获得积分10
7秒前
矮小的聪展完成签到,获得积分10
8秒前
factor完成签到,获得积分10
8秒前
Hello应助李来仪采纳,获得10
9秒前
SEV发布了新的文献求助10
9秒前
9秒前
9秒前
坚强亦丝应助隐形机器猫采纳,获得10
10秒前
小马甲应助SCI采纳,获得10
11秒前
老疯智发布了新的文献求助10
11秒前
sweetbearm应助通~采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794