重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Artificial intelligence-enhanced electrocardiography improves the detection of coronary artery disease

冠状动脉疾病 心电图 心脏病学 内科学 医学 疾病 人工智能 计算机科学
作者
Chi-Hsiao Yeh,Tsung-Hsien Tsai,Chun‐Hung Chen,Yi-Ju Chou,Chun‐Tai Mao,Tzu-Pei Su,Ning‐I Yang,Chi‐Chun Lai,Chien-Tzung Chen,Huey‐Kang Sytwu,Ting‐Fen Tsai
出处
期刊:Computational and structural biotechnology journal [Elsevier]
卷期号:27: 278-286
标识
DOI:10.1016/j.csbj.2024.12.032
摘要

An AI-assisted algorithm has been developed to improve the detection of significant coronary artery disease (CAD) in high-risk individuals who have normal electrocardiograms (ECGs). This retrospective study analyzed ECGs from patients aged ≥ 18 years who were undergoing coronary angiography to obtain a clinical diagnosis at Chang Gung Memorial Hospital in Taiwan. Utilizing 12-lead ECG datasets, the algorithm integrated features like time intervals, amplitudes, and slope between peaks, a total of 561 features, with the XGBoost model yielding the best performance. The AI-enhanced ECG algorithm demonstrated high sensitivity (0.82-0.84) when detecting CAD in patients with normal ECGs and gave remarkably high prediction rates among those with abnormal ECGs, both with and without ischemia (92 %-95 % and 80 %-83 %, respectively). Notably, the algorithm's top features, mostly related to slope and amplitude differences, are challenging for clinicians to discern manually. Additionally, the study highlights significant sex differences regarding feature prediction and ranking. Comparatively, the AI-enhanced ECG's detection capability matched that of myocardial perfusion scintigraphy, which is a costly nuclear medicine test, and offers a more accessible alternative for identifying significant CAD, especially among patients with atypical ECG readings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车茗应助糙糙科研采纳,获得30
刚刚
zsl完成签到 ,获得积分10
刚刚
qprcddd完成签到,获得积分10
1秒前
俏皮幻悲发布了新的文献求助10
1秒前
大力方盒发布了新的文献求助10
1秒前
Balance Man发布了新的文献求助10
1秒前
1秒前
vivi完成签到,获得积分0
1秒前
帅帅完成签到,获得积分10
1秒前
kiki发布了新的文献求助10
2秒前
阳光完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
现代的澜发布了新的文献求助10
3秒前
爆米花应助默己采纳,获得10
3秒前
小李发布了新的文献求助30
3秒前
ding应助默己采纳,获得10
3秒前
小二郎应助默己采纳,获得10
3秒前
烟花应助默己采纳,获得10
3秒前
ding应助默己采纳,获得10
3秒前
传奇3应助默己采纳,获得10
3秒前
乐乐应助默己采纳,获得10
3秒前
3秒前
小马甲应助默己采纳,获得10
3秒前
CodeCraft应助失眠呆呆鱼采纳,获得20
4秒前
5秒前
5秒前
5秒前
5秒前
6秒前
搜集达人应助谨慎乐安采纳,获得80
7秒前
科研通AI2S应助苏莉婷采纳,获得10
7秒前
7秒前
科研通AI2S应助霜糖采纳,获得10
8秒前
Sau1完成签到,获得积分10
8秒前
8秒前
8秒前
甜蜜乐松发布了新的文献求助10
8秒前
现代的澜完成签到,获得积分10
8秒前
momorin发布了新的文献求助50
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466189
求助须知:如何正确求助?哪些是违规求助? 4570151
关于积分的说明 14323225
捐赠科研通 4496641
什么是DOI,文献DOI怎么找? 2463456
邀请新用户注册赠送积分活动 1452353
关于科研通互助平台的介绍 1427516