Artificial intelligence-enhanced electrocardiography improves the detection of coronary artery disease

冠状动脉疾病 心电图 心脏病学 内科学 医学 疾病 人工智能 计算机科学
作者
Chi-Hsiao Yeh,Tsung-Hsien Tsai,Chun‐Hung Chen,Yi-Ju Chou,Chun‐Tai Mao,Tzu-Pei Su,Ning‐I Yang,Chi‐Chun Lai,Chien-Tzung Chen,Huey‐Kang Sytwu,Ting‐Fen Tsai
出处
期刊:Computational and structural biotechnology journal [Elsevier BV]
卷期号:27: 278-286
标识
DOI:10.1016/j.csbj.2024.12.032
摘要

An AI-assisted algorithm has been developed to improve the detection of significant coronary artery disease (CAD) in high-risk individuals who have normal electrocardiograms (ECGs). This retrospective study analyzed ECGs from patients aged ≥ 18 years who were undergoing coronary angiography to obtain a clinical diagnosis at Chang Gung Memorial Hospital in Taiwan. Utilizing 12-lead ECG datasets, the algorithm integrated features like time intervals, amplitudes, and slope between peaks, a total of 561 features, with the XGBoost model yielding the best performance. The AI-enhanced ECG algorithm demonstrated high sensitivity (0.82-0.84) when detecting CAD in patients with normal ECGs and gave remarkably high prediction rates among those with abnormal ECGs, both with and without ischemia (92 %-95 % and 80 %-83 %, respectively). Notably, the algorithm's top features, mostly related to slope and amplitude differences, are challenging for clinicians to discern manually. Additionally, the study highlights significant sex differences regarding feature prediction and ranking. Comparatively, the AI-enhanced ECG's detection capability matched that of myocardial perfusion scintigraphy, which is a costly nuclear medicine test, and offers a more accessible alternative for identifying significant CAD, especially among patients with atypical ECG readings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时尚语梦发布了新的文献求助10
2秒前
nas发布了新的文献求助10
2秒前
星辰大海应助聪明的青雪采纳,获得10
3秒前
沉默羔羊完成签到,获得积分10
4秒前
斐然发布了新的文献求助10
5秒前
大西瓜完成签到,获得积分10
5秒前
梨子完成签到,获得积分10
6秒前
nas完成签到,获得积分20
9秒前
一二三四完成签到,获得积分20
10秒前
13秒前
打打应助One采纳,获得10
13秒前
13秒前
耿大海发布了新的文献求助100
13秒前
16秒前
单身的溪流完成签到 ,获得积分10
18秒前
Rondab应助一二三四采纳,获得10
18秒前
20秒前
21秒前
脑洞疼应助yzxzdm采纳,获得30
21秒前
耿大海完成签到,获得积分10
23秒前
万能图书馆应助紫陌采纳,获得10
26秒前
斯文败类应助蜉蝣采纳,获得10
26秒前
偷喝八喜完成签到,获得积分10
30秒前
31秒前
研友_VZG7GZ应助esbd采纳,获得10
33秒前
天玄一刀完成签到,获得积分10
33秒前
干净思远发布了新的文献求助20
33秒前
拼搏的飞莲完成签到,获得积分10
34秒前
35秒前
圆锥香蕉应助假装有昵称采纳,获得20
38秒前
39秒前
40秒前
Gu0F1完成签到 ,获得积分10
41秒前
furin001完成签到 ,获得积分10
42秒前
yzxzdm发布了新的文献求助30
43秒前
44秒前
44秒前
45秒前
45秒前
蜉蝣发布了新的文献求助10
46秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962340
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141064
捐赠科研通 3241149
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803382