Classification of Molecular Subtypes of Breast Cancer Using Radiomic Features of Preoperative Ultrasound Images

乳腺癌 医学 超声波 无线电技术 放射科 超声科 乳腺超声检查 癌症 乳腺摄影术 内科学
作者
Hongxia Zhang,Leilei Wang,Y. Lin,Xiaoming Ha,Chunyan Huang,Chao Han
标识
DOI:10.1007/s10278-025-01388-8
摘要

Radiomics has been used as a non-invasive medical image analysis technique for diagnosis and prognosis prediction of breast cancer. This study intended to use radiomics based on preoperative Doppler ultrasound images to classify four molecular subtypes of breast cancer. A total of 565 female breast cancer patients diagnosed by postoperative pathology in a hospital between 2014 and 2022 were included in this study. Radiomic features extracted from preoperative ultrasound images and clinical features were used to construct models for the classification of molecular subtypes of breast cancer. The least absolute shrinkage and selection operator (LASSO) regression was applied for the final screening of radiomic features and clinical features. Three classifiers including Logistic regression, support vector machine (SVM), and XGBoost were utilized to construct model. Model performance was assessed primarily by the area under the receiver operating characteristic curve (AUC) and 95% confidence interval (CI). The mean age of these patients was 54.58 (± 11.27) years. Of these 565 patients, 130 (23.01%) were Luminal A subtype, 329 (58.23%) were Luminal B subtype, 65 (11.50%) were human epidermal growth factor receptor-2 (HER-2) subtype, and 41 (7.26%) were triple negative (TN) subtype. A total of 12 clinical features and 8 radiomic features were selected for model construction. The AUC of the SVM model [0.826 (95%CI 0.808–0.845)] was higher than that of the Logistic regression model [0.776 (95%CI 0.756–0.796)] and the XGB model [0.800 (95%CI 0.779–0.821)] in the multiple classification of breast cancer. For the single classification of breast cancer, the AUC of the SVM model was 0.710 (95%CI 0.660–0.760) for Luminal A subtype, 0.639 (95%CI 0.592–0.685) for Luminal B subtype, 0.754 (95%CI 0.695–0.813) for HER-2 subtype, and 0.832 (95%CI 0.771–0.892) for TN subtype. The SVM model with radiomic features combined with clinical features shows good performance in classifying four molecular subtypes of breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
lilinuusss关注了科研通微信公众号
2秒前
2秒前
asss完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
思源应助完美的凝蝶采纳,获得10
5秒前
6秒前
归海天与完成签到,获得积分10
7秒前
可爱如音完成签到,获得积分10
7秒前
AU发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
12秒前
wanglong完成签到,获得积分10
13秒前
烟花应助高大的依琴采纳,获得10
14秒前
酥酥完成签到,获得积分10
15秒前
筱筱完成签到,获得积分10
15秒前
lieeey发布了新的文献求助30
17秒前
17秒前
三更灯火应助YANGYINGSHUO采纳,获得10
18秒前
隐形曼青应助mouse0821采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
wangjue完成签到,获得积分10
21秒前
a_hu完成签到,获得积分10
22秒前
怕孤独的战斗机完成签到,获得积分20
23秒前
pluto应助优美的梦玉采纳,获得10
23秒前
von发布了新的文献求助10
23秒前
23秒前
lieeey完成签到,获得积分10
23秒前
24秒前
璐璐完成签到,获得积分10
25秒前
大白你好完成签到,获得积分10
25秒前
25秒前
一切随风发布了新的文献求助10
26秒前
yy发布了新的文献求助10
26秒前
Akim应助kreep采纳,获得10
27秒前
所所应助怕孤独的战斗机采纳,获得30
27秒前
科研通AI5应助科研通管家采纳,获得30
29秒前
丘比特应助科研通管家采纳,获得10
29秒前
29秒前
量子星尘发布了新的文献求助10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664444
求助须知:如何正确求助?哪些是违规求助? 3224488
关于积分的说明 9757694
捐赠科研通 2934379
什么是DOI,文献DOI怎么找? 1606832
邀请新用户注册赠送积分活动 758873
科研通“疑难数据库(出版商)”最低求助积分说明 735012