Impact of Scanner Manufacturer, Endorectal Coil Use, and Clinical Variables on Deep Learning-assisted Prostate Cancer Classification Using Multiparametric MRI

医学 前列腺癌 扫描仪 人工智能 前列腺 深度学习 医学物理学 接收机工作特性 机器学习 计算机科学 放射科 核医学 癌症 内科学
作者
José Guilherme de Almeida,Nuno M. Rodrigues,Ana Sofia Castro Verde,Ana Mascarenhas Gaivão,Carlos Bilreiro,Inês Santiago,Joana Ip,Sara Belião,Celso Matos,Sara Silva,Manolis Tsiknakis,Kostas Marias,Daniele Regge,Nikolaos Papanikolaou
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.230555
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To assess the impact of scanner manufacturer and scan protocol on the performance of deep learning models to classify prostate cancer (PCa) aggressiveness on biparametric MRI (bpMRI). Materials and Methods In this retrospective study, 5,478 cases from ProstateNet, a PCa bpMRI dataset with examinations from 13 centers, were used to develop five deep learning (DL) models to predict PCa aggressiveness with minimal lesion information and test how using data from different subgroups—scanner manufacturers and endorectal coil (ERC) use (Siemens, Philips, GE with and without ERC and the full dataset)—impacts model performance. Performance was assessed using the area under the receiver operating characteristic curve (AUC). The impact of clinical features (age, prostate-specific antigen level, Prostate Imaging Reporting and Data System [PI-RADS] score) on model performance was also evaluated. Results DL models were trained on 4,328 bpMRI cases, and the best model achieved AUC = 0.73 when trained and tested using data from all manufacturers. Hold-out test set performance was higher when models trained with data from a manufacturer were tested on the same manufacturer (within-and between-manufacturer AUC differences of 0.05 on average, P < .001). The addition of clinical features did not improve performance ( P = .24). Learning curve analyses showed that performance remained stable as training data increased. Analysis of DL features showed that scanner manufacturer and scan protocol heavily influenced feature distributions. Conclusion In automated classification of PCa aggressiveness using bpMRI data, scanner manufacturer and endorectal coil use had a major impact on DL model performance and features. Published under a CC BY 4.0 license.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZMM完成签到,获得积分20
4秒前
文静发布了新的文献求助10
6秒前
西海岸的风完成签到 ,获得积分10
9秒前
安静的绮琴完成签到,获得积分10
12秒前
领导范儿应助标致的蹇采纳,获得10
12秒前
李爱国应助快乐亦凝采纳,获得10
17秒前
领导范儿应助carryxu采纳,获得10
21秒前
方羽应助zheli采纳,获得30
22秒前
景茶茶完成签到 ,获得积分10
24秒前
大力的诗蕾完成签到 ,获得积分10
29秒前
充电宝应助NMSL采纳,获得10
30秒前
30秒前
快乐亦凝发布了新的文献求助10
33秒前
旅行者完成签到 ,获得积分10
34秒前
Lucas应助互助遵法尚德采纳,获得10
34秒前
35秒前
汉堡包应助成就的曼梅采纳,获得10
39秒前
可爱的函函应助guchenniub采纳,获得10
39秒前
cccccccccc完成签到,获得积分10
40秒前
NMSL发布了新的文献求助10
40秒前
44秒前
48秒前
sailingluwl完成签到,获得积分10
48秒前
Orange应助鱼与树采纳,获得10
49秒前
51秒前
自觉冷松发布了新的文献求助10
55秒前
guchenniub发布了新的文献求助10
55秒前
bkagyin应助有魅力荟采纳,获得10
55秒前
惊回发布了新的文献求助10
56秒前
57秒前
58秒前
58秒前
乔qiqiqiqi发布了新的文献求助10
1分钟前
Tristan发布了新的文献求助10
1分钟前
YXH发布了新的文献求助10
1分钟前
鱼与树发布了新的文献求助10
1分钟前
标致的蹇发布了新的文献求助10
1分钟前
qyliu完成签到,获得积分10
1分钟前
失眠的霸完成签到,获得积分10
1分钟前
pluto应助惊回采纳,获得10
1分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Academic Capitalism and the New Economy: Markets, State, and Higher Education 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3375862
求助须知:如何正确求助?哪些是违规求助? 2992254
关于积分的说明 8749935
捐赠科研通 2676510
什么是DOI,文献DOI怎么找? 1466124
科研通“疑难数据库(出版商)”最低求助积分说明 678131
邀请新用户注册赠送积分活动 669801