Impact of Scanner Manufacturer, Endorectal Coil Use, and Clinical Variables on Deep Learning-assisted Prostate Cancer Classification Using Multiparametric MRI

医学 前列腺癌 扫描仪 人工智能 前列腺 深度学习 医学物理学 接收机工作特性 机器学习 计算机科学 放射科 核医学 癌症 内科学
作者
José Guilherme de Almeida,Nuno M. Rodrigues,Ana Sofia Castro Verde,Ana Mascarenhas Gaivão,Carlos Bilreiro,Inês Santiago,Joana Ip,Sara Belião,Celso Matos,Sara Silva,Manolis Tsiknakis,Kostas Marias,Daniele Regge,Nikolaos Papanikolaou
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.230555
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To assess the impact of scanner manufacturer and scan protocol on the performance of deep learning models to classify prostate cancer (PCa) aggressiveness on biparametric MRI (bpMRI). Materials and Methods In this retrospective study, 5,478 cases from ProstateNet, a PCa bpMRI dataset with examinations from 13 centers, were used to develop five deep learning (DL) models to predict PCa aggressiveness with minimal lesion information and test how using data from different subgroups—scanner manufacturers and endorectal coil (ERC) use (Siemens, Philips, GE with and without ERC and the full dataset)—impacts model performance. Performance was assessed using the area under the receiver operating characteristic curve (AUC). The impact of clinical features (age, prostate-specific antigen level, Prostate Imaging Reporting and Data System [PI-RADS] score) on model performance was also evaluated. Results DL models were trained on 4,328 bpMRI cases, and the best model achieved AUC = 0.73 when trained and tested using data from all manufacturers. Hold-out test set performance was higher when models trained with data from a manufacturer were tested on the same manufacturer (within-and between-manufacturer AUC differences of 0.05 on average, P < .001). The addition of clinical features did not improve performance ( P = .24). Learning curve analyses showed that performance remained stable as training data increased. Analysis of DL features showed that scanner manufacturer and scan protocol heavily influenced feature distributions. Conclusion In automated classification of PCa aggressiveness using bpMRI data, scanner manufacturer and endorectal coil use had a major impact on DL model performance and features. Published under a CC BY 4.0 license.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助袁茗阳采纳,获得10
2秒前
xxx完成签到,获得积分10
3秒前
5秒前
金戈完成签到,获得积分10
6秒前
Akim应助大糖糕僧采纳,获得10
6秒前
sam完成签到,获得积分10
7秒前
东擎发布了新的文献求助10
8秒前
自由竺完成签到 ,获得积分10
10秒前
小夏完成签到,获得积分10
11秒前
大个应助清爽灰狼采纳,获得10
11秒前
15秒前
16秒前
17秒前
小长夜完成签到,获得积分10
19秒前
大糖糕僧发布了新的文献求助10
21秒前
清爽灰狼发布了新的文献求助10
23秒前
xinjie发布了新的文献求助10
25秒前
fengliurencai完成签到,获得积分10
29秒前
31秒前
科研通AI2S应助暴躁的从露采纳,获得10
33秒前
畅快的饼干完成签到 ,获得积分10
34秒前
YY完成签到,获得积分10
34秒前
35秒前
小张发布了新的文献求助10
35秒前
巴拿拿发布了新的文献求助10
35秒前
虚幻靖易完成签到,获得积分10
36秒前
鲍文启完成签到 ,获得积分10
36秒前
Lucas应助专一的荧采纳,获得10
38秒前
39秒前
小石头完成签到,获得积分10
39秒前
吱吱吱发布了新的文献求助10
40秒前
Hayat发布了新的文献求助30
41秒前
呜呜呜完成签到,获得积分10
41秒前
小虎同学完成签到,获得积分10
41秒前
42秒前
巴拿拿完成签到,获得积分20
42秒前
Connor完成签到,获得积分10
45秒前
whh123完成签到 ,获得积分10
45秒前
魁梧的鸿煊完成签到 ,获得积分10
45秒前
zhangruiii完成签到,获得积分10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Gay and Lesbian Asia 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3759216
求助须知:如何正确求助?哪些是违规求助? 3302265
关于积分的说明 10121734
捐赠科研通 3016684
什么是DOI,文献DOI怎么找? 1656564
邀请新用户注册赠送积分活动 790536
科研通“疑难数据库(出版商)”最低求助积分说明 753886