Joint Classification of Hyperspectral and LiDAR Data Using Binary-Tree Transformer Network

计算机科学 激光雷达 高光谱成像 人工智能 遥感 模式识别(心理学) 传感器融合 数据挖掘 地理
作者
Huacui Song,Yuanwei Yang,Xianjun Gao,Maqun Zhang,Shaohua Li,Bo Liu,Yanjun Wang,Yuan Kou
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (11): 2706-2706 被引量:2
标识
DOI:10.3390/rs15112706
摘要

The joint utilization of multi-source data is of great significance in geospatial observation applications, such as urban planning, disaster assessment, and military applications. However, this approach is confronted with challenges including inconsistent data structures, irrelevant physical properties, scarce training data, insufficient utilization of information and an imperfect feature fusion method. Therefore, this paper proposes a novel binary-tree Transformer network (BTRF-Net), which is used to fuse heterogeneous information and utilize complementarity among multi-source remote sensing data to enhance the joint classification performance of hyperspectral image (HSI) and light detection and ranging (LiDAR) data. Firstly, a hyperspectral network (HSI-Net) is employed to extract spectral and spatial features of hyperspectral images, while the elevation information of LiDAR data is extracted using the LiDAR network (LiDAR-Net). Secondly, a multi-source transformer complementor (MSTC) is designed that utilizes the complementarity and cooperation among multi-modal feature information in remote sensing images to better capture their correlation. The multi-head complementarity attention mechanism (MHCA) within this complementor can effectively capture global features and local texture information of images, hence achieving full feature fusion. Then, to fully obtain feature information of multi-source remote sensing images, this paper designs a complete binary tree structure, binary feature search tree (BFST), which fuses multi-modal features at different network levels to obtain multiple image features with stronger representation abilities, effectively enhancing the stability and robustness of the network. Finally, several groups of experiments are designed to compare and analyze the proposed BTRF-Net with traditional methods and several advanced deep learning networks using two datasets: Houston and Trento. The results show that the proposed network outperforms other state-of-the-art methods even with small training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lemon发布了新的文献求助10
刚刚
刚刚
way完成签到,获得积分10
刚刚
1秒前
2秒前
科研完成签到 ,获得积分10
2秒前
Amber发布了新的文献求助10
4秒前
爆米花应助LC采纳,获得10
4秒前
完美世界应助LC采纳,获得10
4秒前
余琳发布了新的文献求助10
5秒前
外向语山发布了新的文献求助10
5秒前
fan完成签到,获得积分10
6秒前
7秒前
Liu889888发布了新的文献求助10
7秒前
疯狂的冬瓜完成签到,获得积分10
7秒前
David完成签到,获得积分10
8秒前
8秒前
朱立夫完成签到 ,获得积分10
9秒前
脑洞疼应助佳哥闯天下采纳,获得10
10秒前
10秒前
科研通AI2S应助gaberella采纳,获得10
11秒前
52Hz完成签到,获得积分10
11秒前
11秒前
12秒前
桐桐应助陶醉觅夏采纳,获得10
12秒前
12秒前
13秒前
酱圤发布了新的文献求助10
13秒前
共享精神应助zhaowenxian采纳,获得10
13秒前
HESHIYUE发布了新的文献求助10
15秒前
英姑应助yueyueyueyue采纳,获得10
15秒前
含蓄心锁发布了新的文献求助10
15秒前
无花果应助linzy采纳,获得10
16秒前
16秒前
16秒前
17秒前
白色风车完成签到,获得积分10
17秒前
如初完成签到 ,获得积分10
18秒前
我是老大应助xumengyu采纳,获得10
19秒前
内向人生完成签到,获得积分10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143800
求助须知:如何正确求助?哪些是违规求助? 2795380
关于积分的说明 7814911
捐赠科研通 2451437
什么是DOI,文献DOI怎么找? 1304477
科研通“疑难数据库(出版商)”最低求助积分说明 627231
版权声明 601419