Joint Classification of Hyperspectral and LiDAR Data Using Binary-Tree Transformer Network

计算机科学 激光雷达 高光谱成像 人工智能 遥感 模式识别(心理学) 传感器融合 数据挖掘 地理
作者
Huacui Song,Yuanwei Yang,Xianjun Gao,Maqun Zhang,Shaohua Li,Bo Liu,Yanjun Wang,Yuan Kou
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (11): 2706-2706 被引量:2
标识
DOI:10.3390/rs15112706
摘要

The joint utilization of multi-source data is of great significance in geospatial observation applications, such as urban planning, disaster assessment, and military applications. However, this approach is confronted with challenges including inconsistent data structures, irrelevant physical properties, scarce training data, insufficient utilization of information and an imperfect feature fusion method. Therefore, this paper proposes a novel binary-tree Transformer network (BTRF-Net), which is used to fuse heterogeneous information and utilize complementarity among multi-source remote sensing data to enhance the joint classification performance of hyperspectral image (HSI) and light detection and ranging (LiDAR) data. Firstly, a hyperspectral network (HSI-Net) is employed to extract spectral and spatial features of hyperspectral images, while the elevation information of LiDAR data is extracted using the LiDAR network (LiDAR-Net). Secondly, a multi-source transformer complementor (MSTC) is designed that utilizes the complementarity and cooperation among multi-modal feature information in remote sensing images to better capture their correlation. The multi-head complementarity attention mechanism (MHCA) within this complementor can effectively capture global features and local texture information of images, hence achieving full feature fusion. Then, to fully obtain feature information of multi-source remote sensing images, this paper designs a complete binary tree structure, binary feature search tree (BFST), which fuses multi-modal features at different network levels to obtain multiple image features with stronger representation abilities, effectively enhancing the stability and robustness of the network. Finally, several groups of experiments are designed to compare and analyze the proposed BTRF-Net with traditional methods and several advanced deep learning networks using two datasets: Houston and Trento. The results show that the proposed network outperforms other state-of-the-art methods even with small training samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
ju00发布了新的文献求助10
1秒前
杨明智完成签到 ,获得积分10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
CipherSage应助Sharon采纳,获得10
2秒前
cc应助科研通管家采纳,获得20
2秒前
2秒前
11应助科研通管家采纳,获得20
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
七七发布了新的文献求助10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
cc应助科研通管家采纳,获得20
2秒前
11应助科研通管家采纳,获得20
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
荼白完成签到 ,获得积分10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
3秒前
所所应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
所所应助科研通管家采纳,获得10
3秒前
3秒前
ding应助科研通管家采纳,获得10
3秒前
3秒前
kiminonawa应助科研通管家采纳,获得10
3秒前
3秒前
所所应助科研通管家采纳,获得10
3秒前
3秒前
传奇3应助陈隆采纳,获得10
3秒前
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727674
求助须知:如何正确求助?哪些是违规求助? 5309608
关于积分的说明 15311894
捐赠科研通 4875130
什么是DOI,文献DOI怎么找? 2618553
邀请新用户注册赠送积分活动 1568241
关于科研通互助平台的介绍 1524919