Joint Classification of Hyperspectral and LiDAR Data Using Binary-Tree Transformer Network

计算机科学 激光雷达 高光谱成像 人工智能 遥感 模式识别(心理学) 传感器融合 数据挖掘 地理
作者
Huacui Song,Yuanwei Yang,Xianjun Gao,Maqun Zhang,Shaohua Li,Bo Liu,Yanjun Wang,Yuan Kou
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (11): 2706-2706 被引量:2
标识
DOI:10.3390/rs15112706
摘要

The joint utilization of multi-source data is of great significance in geospatial observation applications, such as urban planning, disaster assessment, and military applications. However, this approach is confronted with challenges including inconsistent data structures, irrelevant physical properties, scarce training data, insufficient utilization of information and an imperfect feature fusion method. Therefore, this paper proposes a novel binary-tree Transformer network (BTRF-Net), which is used to fuse heterogeneous information and utilize complementarity among multi-source remote sensing data to enhance the joint classification performance of hyperspectral image (HSI) and light detection and ranging (LiDAR) data. Firstly, a hyperspectral network (HSI-Net) is employed to extract spectral and spatial features of hyperspectral images, while the elevation information of LiDAR data is extracted using the LiDAR network (LiDAR-Net). Secondly, a multi-source transformer complementor (MSTC) is designed that utilizes the complementarity and cooperation among multi-modal feature information in remote sensing images to better capture their correlation. The multi-head complementarity attention mechanism (MHCA) within this complementor can effectively capture global features and local texture information of images, hence achieving full feature fusion. Then, to fully obtain feature information of multi-source remote sensing images, this paper designs a complete binary tree structure, binary feature search tree (BFST), which fuses multi-modal features at different network levels to obtain multiple image features with stronger representation abilities, effectively enhancing the stability and robustness of the network. Finally, several groups of experiments are designed to compare and analyze the proposed BTRF-Net with traditional methods and several advanced deep learning networks using two datasets: Houston and Trento. The results show that the proposed network outperforms other state-of-the-art methods even with small training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果儿完成签到 ,获得积分10
刚刚
Akim应助Nari采纳,获得10
刚刚
3秒前
李健应助YJ采纳,获得10
4秒前
Prime完成签到 ,获得积分10
6秒前
6秒前
科研通AI6应助1234567采纳,获得10
6秒前
痛苦并快乐完成签到 ,获得积分10
7秒前
一一应助boyue采纳,获得10
8秒前
¥#¥-11完成签到,获得积分10
11秒前
潮哈哈耶完成签到,获得积分10
14秒前
14秒前
MENGQi完成签到,获得积分10
15秒前
在水一方应助坚强的笑天采纳,获得10
15秒前
科研通AI6应助dandan采纳,获得10
15秒前
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
事上炼应助科研通管家采纳,获得10
16秒前
凉拌黄瓜完成签到,获得积分10
18秒前
18秒前
伶俐眼神完成签到,获得积分10
18秒前
19秒前
19秒前
20秒前
斯文败类应助rouxi采纳,获得10
21秒前
马跑跑发布了新的文献求助10
21秒前
出其东门发布了新的文献求助10
22秒前
NexusExplorer应助Elesis采纳,获得10
22秒前
23秒前
天才幸运鱼完成签到,获得积分10
23秒前
小小怪完成签到 ,获得积分10
24秒前
25秒前
bb发布了新的文献求助10
27秒前
LT完成签到 ,获得积分10
27秒前
little2000完成签到 ,获得积分10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373655
求助须知:如何正确求助?哪些是违规求助? 4499675
关于积分的说明 14007024
捐赠科研通 4406529
什么是DOI,文献DOI怎么找? 2420537
邀请新用户注册赠送积分活动 1413340
关于科研通互助平台的介绍 1389891