亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Joint Classification of Hyperspectral and LiDAR Data Using Binary-Tree Transformer Network

计算机科学 激光雷达 高光谱成像 人工智能 遥感 模式识别(心理学) 传感器融合 数据挖掘 地理
作者
Huacui Song,Yuanwei Yang,Xianjun Gao,Maqun Zhang,Shaohua Li,Bo Liu,Yanjun Wang,Yuan Kou
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (11): 2706-2706 被引量:2
标识
DOI:10.3390/rs15112706
摘要

The joint utilization of multi-source data is of great significance in geospatial observation applications, such as urban planning, disaster assessment, and military applications. However, this approach is confronted with challenges including inconsistent data structures, irrelevant physical properties, scarce training data, insufficient utilization of information and an imperfect feature fusion method. Therefore, this paper proposes a novel binary-tree Transformer network (BTRF-Net), which is used to fuse heterogeneous information and utilize complementarity among multi-source remote sensing data to enhance the joint classification performance of hyperspectral image (HSI) and light detection and ranging (LiDAR) data. Firstly, a hyperspectral network (HSI-Net) is employed to extract spectral and spatial features of hyperspectral images, while the elevation information of LiDAR data is extracted using the LiDAR network (LiDAR-Net). Secondly, a multi-source transformer complementor (MSTC) is designed that utilizes the complementarity and cooperation among multi-modal feature information in remote sensing images to better capture their correlation. The multi-head complementarity attention mechanism (MHCA) within this complementor can effectively capture global features and local texture information of images, hence achieving full feature fusion. Then, to fully obtain feature information of multi-source remote sensing images, this paper designs a complete binary tree structure, binary feature search tree (BFST), which fuses multi-modal features at different network levels to obtain multiple image features with stronger representation abilities, effectively enhancing the stability and robustness of the network. Finally, several groups of experiments are designed to compare and analyze the proposed BTRF-Net with traditional methods and several advanced deep learning networks using two datasets: Houston and Trento. The results show that the proposed network outperforms other state-of-the-art methods even with small training samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
10秒前
ch完成签到,获得积分10
21秒前
33秒前
36秒前
一颗忧伤的覆盆子完成签到,获得积分10
39秒前
支雨泽完成签到,获得积分10
39秒前
香芹又青完成签到,获得积分10
39秒前
50秒前
年鱼精完成签到 ,获得积分10
52秒前
55秒前
英俊的铭应助科研通管家采纳,获得10
57秒前
58秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
sys549发布了新的文献求助10
1分钟前
1分钟前
Nancy0818完成签到 ,获得积分10
1分钟前
2分钟前
月亮夏的夏完成签到,获得积分10
2分钟前
smottom应助月亮夏的夏采纳,获得10
2分钟前
2分钟前
2分钟前
清脆觅珍发布了新的文献求助10
2分钟前
袁青寒完成签到,获得积分10
2分钟前
2分钟前
研友_VZG7GZ应助毕业采纳,获得10
2分钟前
淡淡诗柳发布了新的文献求助20
3分钟前
9527完成签到,获得积分10
3分钟前
3分钟前
淡淡诗柳完成签到,获得积分10
3分钟前
ch发布了新的文献求助10
3分钟前
3分钟前
Gydl完成签到,获得积分10
3分钟前
3分钟前
美满尔蓝完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
雪霁完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772752
求助须知:如何正确求助?哪些是违规求助? 5601889
关于积分的说明 15430003
捐赠科研通 4905623
什么是DOI,文献DOI怎么找? 2639561
邀请新用户注册赠送积分活动 1587463
关于科研通互助平台的介绍 1542394