Joint Classification of Hyperspectral and LiDAR Data Using Binary-Tree Transformer Network

计算机科学 激光雷达 高光谱成像 人工智能 遥感 模式识别(心理学) 传感器融合 数据挖掘 地理
作者
Huacui Song,Yuanwei Yang,Xianjun Gao,Maqun Zhang,Shaohua Li,Bo Liu,Yanjun Wang,Yuan Kou
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (11): 2706-2706 被引量:2
标识
DOI:10.3390/rs15112706
摘要

The joint utilization of multi-source data is of great significance in geospatial observation applications, such as urban planning, disaster assessment, and military applications. However, this approach is confronted with challenges including inconsistent data structures, irrelevant physical properties, scarce training data, insufficient utilization of information and an imperfect feature fusion method. Therefore, this paper proposes a novel binary-tree Transformer network (BTRF-Net), which is used to fuse heterogeneous information and utilize complementarity among multi-source remote sensing data to enhance the joint classification performance of hyperspectral image (HSI) and light detection and ranging (LiDAR) data. Firstly, a hyperspectral network (HSI-Net) is employed to extract spectral and spatial features of hyperspectral images, while the elevation information of LiDAR data is extracted using the LiDAR network (LiDAR-Net). Secondly, a multi-source transformer complementor (MSTC) is designed that utilizes the complementarity and cooperation among multi-modal feature information in remote sensing images to better capture their correlation. The multi-head complementarity attention mechanism (MHCA) within this complementor can effectively capture global features and local texture information of images, hence achieving full feature fusion. Then, to fully obtain feature information of multi-source remote sensing images, this paper designs a complete binary tree structure, binary feature search tree (BFST), which fuses multi-modal features at different network levels to obtain multiple image features with stronger representation abilities, effectively enhancing the stability and robustness of the network. Finally, several groups of experiments are designed to compare and analyze the proposed BTRF-Net with traditional methods and several advanced deep learning networks using two datasets: Houston and Trento. The results show that the proposed network outperforms other state-of-the-art methods even with small training samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
七田皿发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
mol发布了新的文献求助10
3秒前
桐桐应助璟晔采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
傻傻的哈密瓜完成签到,获得积分10
5秒前
简柠发布了新的文献求助10
5秒前
Miracle发布了新的文献求助10
6秒前
丘比特应助洁净的智宸采纳,获得10
6秒前
许诺发布了新的文献求助10
7秒前
受伤的冰姬完成签到,获得积分10
7秒前
耍酷千亦发布了新的文献求助10
7秒前
RJC发布了新的文献求助10
7秒前
xuxu完成签到,获得积分10
8秒前
10秒前
10秒前
华仔应助LBQ采纳,获得10
10秒前
10秒前
11秒前
11秒前
mol完成签到,获得积分10
11秒前
Sunny完成签到,获得积分10
13秒前
13秒前
科研通AI6.1应助qqq采纳,获得10
13秒前
houfei发布了新的文献求助10
14秒前
小王完成签到,获得积分10
15秒前
15秒前
16秒前
强仔发布了新的文献求助10
16秒前
17秒前
香蕉觅云应助HXPHXP采纳,获得10
17秒前
xueshufengbujue完成签到,获得积分10
18秒前
化学小学生完成签到,获得积分10
18秒前
18秒前
19秒前
reck发布了新的文献求助10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5753261
求助须知:如何正确求助?哪些是违规求助? 5479350
关于积分的说明 15377001
捐赠科研通 4892141
什么是DOI,文献DOI怎么找? 2630924
邀请新用户注册赠送积分活动 1579097
关于科研通互助平台的介绍 1534924