已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Joint Classification of Hyperspectral and LiDAR Data Using Binary-Tree Transformer Network

计算机科学 激光雷达 高光谱成像 人工智能 遥感 模式识别(心理学) 传感器融合 数据挖掘 地理
作者
Huacui Song,Yuanwei Yang,Xianjun Gao,Maqun Zhang,Shaohua Li,Bo Liu,Yanjun Wang,Yuan Kou
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (11): 2706-2706 被引量:2
标识
DOI:10.3390/rs15112706
摘要

The joint utilization of multi-source data is of great significance in geospatial observation applications, such as urban planning, disaster assessment, and military applications. However, this approach is confronted with challenges including inconsistent data structures, irrelevant physical properties, scarce training data, insufficient utilization of information and an imperfect feature fusion method. Therefore, this paper proposes a novel binary-tree Transformer network (BTRF-Net), which is used to fuse heterogeneous information and utilize complementarity among multi-source remote sensing data to enhance the joint classification performance of hyperspectral image (HSI) and light detection and ranging (LiDAR) data. Firstly, a hyperspectral network (HSI-Net) is employed to extract spectral and spatial features of hyperspectral images, while the elevation information of LiDAR data is extracted using the LiDAR network (LiDAR-Net). Secondly, a multi-source transformer complementor (MSTC) is designed that utilizes the complementarity and cooperation among multi-modal feature information in remote sensing images to better capture their correlation. The multi-head complementarity attention mechanism (MHCA) within this complementor can effectively capture global features and local texture information of images, hence achieving full feature fusion. Then, to fully obtain feature information of multi-source remote sensing images, this paper designs a complete binary tree structure, binary feature search tree (BFST), which fuses multi-modal features at different network levels to obtain multiple image features with stronger representation abilities, effectively enhancing the stability and robustness of the network. Finally, several groups of experiments are designed to compare and analyze the proposed BTRF-Net with traditional methods and several advanced deep learning networks using two datasets: Houston and Trento. The results show that the proposed network outperforms other state-of-the-art methods even with small training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
眼睛大的胡萝卜完成签到 ,获得积分10
刚刚
情怀应助凹凸先森采纳,获得10
刚刚
3秒前
ghhhn发布了新的文献求助10
4秒前
4秒前
资山雁完成签到 ,获得积分10
4秒前
焱焱不忘完成签到 ,获得积分0
7秒前
杨远杰完成签到 ,获得积分10
7秒前
hulahula完成签到 ,获得积分10
7秒前
读研暴躁哥关注了科研通微信公众号
9秒前
9秒前
呆呆完成签到 ,获得积分10
9秒前
乔一发布了新的文献求助10
10秒前
12秒前
12秒前
呼啦呼啦完成签到 ,获得积分10
13秒前
梦想里发布了新的文献求助10
13秒前
FashionBoy应助jiayo采纳,获得10
14秒前
ruhemann发布了新的文献求助10
15秒前
Ying发布了新的文献求助10
17秒前
18秒前
乔一完成签到,获得积分20
18秒前
爆米花应助乔一采纳,获得10
24秒前
完美世界应助梦想里采纳,获得10
24秒前
酷波er应助ruhemann采纳,获得10
24秒前
stark完成签到,获得积分10
24秒前
寇博翔发布了新的文献求助10
25秒前
科研通AI6应助Ying采纳,获得10
25秒前
潇洒的马里奥完成签到,获得积分10
26秒前
soar完成签到 ,获得积分10
26秒前
26秒前
常绝山完成签到 ,获得积分10
27秒前
陈欣瑶完成签到 ,获得积分10
29秒前
ljn完成签到 ,获得积分10
29秒前
Duang完成签到,获得积分10
30秒前
明时完成签到,获得积分10
30秒前
李明珠发布了新的文献求助10
30秒前
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944379
求助须知:如何正确求助?哪些是违规求助? 4209328
关于积分的说明 13085062
捐赠科研通 3988891
什么是DOI,文献DOI怎么找? 2183953
邀请新用户注册赠送积分活动 1199314
关于科研通互助平台的介绍 1112211