亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Joint Classification of Hyperspectral and LiDAR Data Using Binary-Tree Transformer Network

计算机科学 激光雷达 高光谱成像 人工智能 遥感 模式识别(心理学) 传感器融合 数据挖掘 地理
作者
Huacui Song,Yuanwei Yang,Xianjun Gao,Maqun Zhang,Shaohua Li,Bo Liu,Yanjun Wang,Yuan Kou
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (11): 2706-2706 被引量:2
标识
DOI:10.3390/rs15112706
摘要

The joint utilization of multi-source data is of great significance in geospatial observation applications, such as urban planning, disaster assessment, and military applications. However, this approach is confronted with challenges including inconsistent data structures, irrelevant physical properties, scarce training data, insufficient utilization of information and an imperfect feature fusion method. Therefore, this paper proposes a novel binary-tree Transformer network (BTRF-Net), which is used to fuse heterogeneous information and utilize complementarity among multi-source remote sensing data to enhance the joint classification performance of hyperspectral image (HSI) and light detection and ranging (LiDAR) data. Firstly, a hyperspectral network (HSI-Net) is employed to extract spectral and spatial features of hyperspectral images, while the elevation information of LiDAR data is extracted using the LiDAR network (LiDAR-Net). Secondly, a multi-source transformer complementor (MSTC) is designed that utilizes the complementarity and cooperation among multi-modal feature information in remote sensing images to better capture their correlation. The multi-head complementarity attention mechanism (MHCA) within this complementor can effectively capture global features and local texture information of images, hence achieving full feature fusion. Then, to fully obtain feature information of multi-source remote sensing images, this paper designs a complete binary tree structure, binary feature search tree (BFST), which fuses multi-modal features at different network levels to obtain multiple image features with stronger representation abilities, effectively enhancing the stability and robustness of the network. Finally, several groups of experiments are designed to compare and analyze the proposed BTRF-Net with traditional methods and several advanced deep learning networks using two datasets: Houston and Trento. The results show that the proposed network outperforms other state-of-the-art methods even with small training samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kluberos完成签到 ,获得积分10
1秒前
5秒前
12秒前
上官若男应助莫哦采纳,获得10
13秒前
粽子完成签到,获得积分10
15秒前
一条咸鱼完成签到 ,获得积分10
16秒前
GU完成签到,获得积分10
17秒前
18秒前
22秒前
张雯秀发布了新的文献求助10
24秒前
在水一方应助橘子有点酸采纳,获得10
24秒前
丘比特应助勇往直前采纳,获得10
26秒前
莫哦发布了新的文献求助10
27秒前
少夫人完成签到,获得积分10
29秒前
31秒前
少夫人发布了新的文献求助30
33秒前
张雯秀完成签到,获得积分20
33秒前
勇往直前发布了新的文献求助10
38秒前
41秒前
朱摩玑发布了新的文献求助10
46秒前
搜集达人应助莫哦采纳,获得10
46秒前
Crisp完成签到 ,获得积分10
56秒前
58秒前
白家瑜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
土又鸟发布了新的文献求助10
1分钟前
归尘应助harry采纳,获得10
1分钟前
xuanjiawu完成签到 ,获得积分10
1分钟前
小蘑菇应助土又鸟采纳,获得10
1分钟前
style完成签到,获得积分10
1分钟前
SciGPT应助felix采纳,获得10
1分钟前
1分钟前
NEKO发布了新的文献求助10
1分钟前
白家瑜完成签到 ,获得积分20
1分钟前
陆lyy发布了新的文献求助10
1分钟前
sn完成签到 ,获得积分10
2分钟前
陆lyy完成签到,获得积分20
2分钟前
kong完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603266
求助须知:如何正确求助?哪些是违规求助? 4688354
关于积分的说明 14853288
捐赠科研通 4688706
什么是DOI,文献DOI怎么找? 2540535
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471543