已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Joint Classification of Hyperspectral and LiDAR Data Using Binary-Tree Transformer Network

计算机科学 激光雷达 高光谱成像 人工智能 遥感 模式识别(心理学) 传感器融合 数据挖掘 地理
作者
Huacui Song,Yuanwei Yang,Xianjun Gao,Maqun Zhang,Shaohua Li,Bo Liu,Yanjun Wang,Yuan Kou
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (11): 2706-2706 被引量:2
标识
DOI:10.3390/rs15112706
摘要

The joint utilization of multi-source data is of great significance in geospatial observation applications, such as urban planning, disaster assessment, and military applications. However, this approach is confronted with challenges including inconsistent data structures, irrelevant physical properties, scarce training data, insufficient utilization of information and an imperfect feature fusion method. Therefore, this paper proposes a novel binary-tree Transformer network (BTRF-Net), which is used to fuse heterogeneous information and utilize complementarity among multi-source remote sensing data to enhance the joint classification performance of hyperspectral image (HSI) and light detection and ranging (LiDAR) data. Firstly, a hyperspectral network (HSI-Net) is employed to extract spectral and spatial features of hyperspectral images, while the elevation information of LiDAR data is extracted using the LiDAR network (LiDAR-Net). Secondly, a multi-source transformer complementor (MSTC) is designed that utilizes the complementarity and cooperation among multi-modal feature information in remote sensing images to better capture their correlation. The multi-head complementarity attention mechanism (MHCA) within this complementor can effectively capture global features and local texture information of images, hence achieving full feature fusion. Then, to fully obtain feature information of multi-source remote sensing images, this paper designs a complete binary tree structure, binary feature search tree (BFST), which fuses multi-modal features at different network levels to obtain multiple image features with stronger representation abilities, effectively enhancing the stability and robustness of the network. Finally, several groups of experiments are designed to compare and analyze the proposed BTRF-Net with traditional methods and several advanced deep learning networks using two datasets: Houston and Trento. The results show that the proposed network outperforms other state-of-the-art methods even with small training samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hao完成签到,获得积分10
1秒前
可爱的函函应助Bin采纳,获得10
1秒前
www发布了新的文献求助10
2秒前
常常嘻嘻发布了新的文献求助10
5秒前
ccf完成签到 ,获得积分10
6秒前
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
AN应助科研通管家采纳,获得100
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
7秒前
TED应助科研通管家采纳,获得10
7秒前
7秒前
轨迹应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得30
7秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
8秒前
Sunday完成签到 ,获得积分10
10秒前
科研通AI6.1应助熊熊阁采纳,获得10
11秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
丘比特应助chruse采纳,获得10
13秒前
liya发布了新的文献求助10
15秒前
李健应助佛光辉采纳,获得10
16秒前
16秒前
16秒前
无奈的盈发布了新的文献求助10
16秒前
18秒前
18秒前
19秒前
Groot发布了新的文献求助10
21秒前
叼着奶瓶上天完成签到,获得积分10
23秒前
23秒前
科研通AI6.1应助wsf2023采纳,获得10
24秒前
hy完成签到 ,获得积分10
24秒前
GOURDIN发布了新的文献求助10
24秒前
白华苍松发布了新的文献求助20
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771770
求助须知:如何正确求助?哪些是违规求助? 5593601
关于积分的说明 15428336
捐赠科研通 4905041
什么是DOI,文献DOI怎么找? 2639200
邀请新用户注册赠送积分活动 1587060
关于科研通互助平台的介绍 1541941