A lightweight few-shot marine object detection network for unmanned surface vehicles

计算机科学 背景(考古学) 目标检测 过程(计算) 弹丸 人工智能 感知 实时计算 特征(语言学) 对象(语法) 任务(项目管理) 计算机视觉 模拟 系统工程 工程类 模式识别(心理学) 古生物学 语言学 化学 哲学 有机化学 神经科学 生物 操作系统
作者
Bo Wang,Peng Jiang,Jingxuan Gao,Wei Huo,Zhangqi Yang,Yulei Liao
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:277: 114329-114329 被引量:5
标识
DOI:10.1016/j.oceaneng.2023.114329
摘要

Unmanned surface vehicles (USVs) are playing an important role in marine research, exploration and development. However, the perception capability of USVs is limited due to some objective factors. Firstly, the perception modules usually need to be deployed on processing devices with limited computing power, considering the power consumption and thermal dissipation. Secondly, collecting abundant training datasets of marine objects is a rather difficult mission due to complex environmental factors, such as illumination, weather and sea conditions. Thirdly, the perception modules cannot adapt to detection task of new objects fast enough, especially in few-shot scenarios they cannot perform well. To solve the above problems, we improved the ShuffleNet and designed Context Attention Enhancement FPN (CAE-FPN) to get an efficient lightweight network which is called ISDet. Then, a Progressive Gradient and Dynamic Learning Rate for MAML (PD-MAML) is proposed to solve the instability problem in meta training process with few-shot scenario. And a feature reweighting module is proposed to adapt our designed ISDet to new few-shot category. Experiments show that compared with other lightweight state-of-the-art networks, the proposed ISDet achieves better mean average precision with less model size, and it adapts to a new few-shot category fast while maintains the detection precision of existing categories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助贺呵呵采纳,获得10
刚刚
里lilili应助张明玉采纳,获得10
1秒前
地表飞猪应助由雨柏采纳,获得10
1秒前
雪原白鹿完成签到,获得积分10
2秒前
飞仔123完成签到 ,获得积分20
2秒前
兰彻完成签到,获得积分10
2秒前
zcbb完成签到,获得积分10
3秒前
蓓蕾完成签到,获得积分10
3秒前
Jasper应助CatC采纳,获得10
4秒前
4秒前
5秒前
Hancock完成签到 ,获得积分10
5秒前
鲤鱼一手完成签到,获得积分10
5秒前
kingwill应助灵巧的孤容采纳,获得20
6秒前
张明玉完成签到,获得积分10
7秒前
7秒前
8秒前
奶黄包应助林中逍遥采纳,获得30
8秒前
Sue发布了新的文献求助10
8秒前
呆呆完成签到 ,获得积分10
9秒前
9秒前
10秒前
专一的新之完成签到 ,获得积分10
10秒前
wang1090发布了新的文献求助10
11秒前
卿君完成签到,获得积分10
11秒前
贺呵呵完成签到,获得积分20
11秒前
小研同学完成签到,获得积分10
11秒前
11秒前
LH完成签到,获得积分10
11秒前
panyi驳回了英姑应助
12秒前
小李新人完成签到 ,获得积分10
12秒前
咿呀咿呀哟完成签到,获得积分10
12秒前
共享精神应助Little2采纳,获得10
12秒前
贺呵呵发布了新的文献求助10
13秒前
13秒前
舒服的初蓝完成签到,获得积分10
13秒前
范慧晨发布了新的文献求助10
13秒前
深时完成签到,获得积分10
15秒前
王肖完成签到,获得积分10
15秒前
耶耶完成签到 ,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960377
求助须知:如何正确求助?哪些是违规求助? 3506460
关于积分的说明 11130713
捐赠科研通 3238673
什么是DOI,文献DOI怎么找? 1789847
邀请新用户注册赠送积分活动 871964
科研通“疑难数据库(出版商)”最低求助积分说明 803099