A photovoltaic surface defect detection method for building based on deep learning

光伏系统 计算机科学 可靠性(半导体) 推论 光伏 人工智能 深度学习 可再生能源 可靠性工程 工程类 电气工程 功率(物理) 物理 量子力学
作者
Yukang Cao,Dandan Pang,Yi Yan,Yongqing Jiang,Chongyi Tian
出处
期刊:Journal of building engineering [Elsevier]
卷期号:70: 106375-106375 被引量:18
标识
DOI:10.1016/j.jobe.2023.106375
摘要

The inspection and diagnosis of building engineering involve health monitoring of buildings and related facilities, and the utilization of renewable energy, such as solar energy, is crucial for smooth operation of modern construction projects. The detection of solar panel defects is related to the reliability and efficiency of building photovoltaics and has become a field of concern. Using deep learning to detect defects can improve the stability of building photovoltaics. However, achieving a balance between algorithm accuracy and reasoning speed requires further study. This paper presents an improved algorithm based on YOLO-v5, named YOLOv5s-GBC, which improves accuracy and inference speed. This demonstrates the advantages of fast and accurate photovoltaic defect detection. Based on the classical YOLO-v5 algorithm, the attention mechanism and bidirectional feature pyramid network were adopted to improve the accuracy of defect detection. Then, the lightweight module GhostConv and the Gaussian error linear unit activation function were used to reduce the number of model parameters and improve the reasoning speed. Further, the defect dataset of electroluminescence images proposed by the 35th European Photovoltaic Solar Energy Conference and Exhibition was used to verify the effectiveness of the proposed method. The experimental results show that YOLOv5s-GBC is superior to the original method in many evaluation indices, i.e., the accuracy and inference speed were increased by 2% and 20.3%, respectively. In conclusion, YOLOv5s-GBC exhibited better performance compared to other deep learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
进口小宵发布了新的文献求助10
刚刚
刚刚
刚刚
冰勾板勾发布了新的文献求助10
1秒前
1秒前
淡定枕头应助DumBell采纳,获得10
1秒前
chenqq完成签到,获得积分10
1秒前
无花果应助nenoaowu采纳,获得10
1秒前
1秒前
Orange应助星河圈揽采纳,获得10
2秒前
小黑板发布了新的文献求助10
2秒前
科研通AI2S应助about0731采纳,获得10
2秒前
3秒前
3秒前
风信子发布了新的文献求助10
3秒前
博利完成签到,获得积分10
4秒前
4秒前
zhangxiao123发布了新的文献求助30
4秒前
周周发布了新的文献求助10
5秒前
糖糖应助PQ采纳,获得10
5秒前
mango发布了新的文献求助10
5秒前
6秒前
6秒前
烟花应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
7秒前
CipherSage应助高贵路灯采纳,获得10
7秒前
可以完成签到,获得积分10
7秒前
吹吹晚风发布了新的文献求助10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
lzq完成签到,获得积分10
7秒前
7秒前
华仔应助LSS采纳,获得10
8秒前
科研通AI2S应助傅逊采纳,获得10
9秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217369
求助须知:如何正确求助?哪些是违规求助? 2866690
关于积分的说明 8152715
捐赠科研通 2533461
什么是DOI,文献DOI怎么找? 1366197
科研通“疑难数据库(出版商)”最低求助积分说明 644716
邀请新用户注册赠送积分活动 617713