A photovoltaic surface defect detection method for building based on deep learning

光伏系统 计算机科学 可靠性(半导体) 推论 光伏 人工智能 深度学习 可再生能源 可靠性工程 工程类 电气工程 功率(物理) 物理 量子力学
作者
Yukang Cao,Dandan Pang,Yi Yan,Yongqing Jiang,Chongyi Tian
出处
期刊:Journal of building engineering [Elsevier]
卷期号:70: 106375-106375 被引量:48
标识
DOI:10.1016/j.jobe.2023.106375
摘要

The inspection and diagnosis of building engineering involve health monitoring of buildings and related facilities, and the utilization of renewable energy, such as solar energy, is crucial for smooth operation of modern construction projects. The detection of solar panel defects is related to the reliability and efficiency of building photovoltaics and has become a field of concern. Using deep learning to detect defects can improve the stability of building photovoltaics. However, achieving a balance between algorithm accuracy and reasoning speed requires further study. This paper presents an improved algorithm based on YOLO-v5, named YOLOv5s-GBC, which improves accuracy and inference speed. This demonstrates the advantages of fast and accurate photovoltaic defect detection. Based on the classical YOLO-v5 algorithm, the attention mechanism and bidirectional feature pyramid network were adopted to improve the accuracy of defect detection. Then, the lightweight module GhostConv and the Gaussian error linear unit activation function were used to reduce the number of model parameters and improve the reasoning speed. Further, the defect dataset of electroluminescence images proposed by the 35th European Photovoltaic Solar Energy Conference and Exhibition was used to verify the effectiveness of the proposed method. The experimental results show that YOLOv5s-GBC is superior to the original method in many evaluation indices, i.e., the accuracy and inference speed were increased by 2% and 20.3%, respectively. In conclusion, YOLOv5s-GBC exhibited better performance compared to other deep learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2237发布了新的文献求助10
刚刚
李健的小迷弟应助麻团采纳,获得10
1秒前
充电宝应助笨笨的鬼神采纳,获得10
1秒前
1秒前
1秒前
Serendipity发布了新的文献求助10
3秒前
奋斗向南发布了新的文献求助10
3秒前
笑点低机器猫完成签到,获得积分10
3秒前
xiaotingMa完成签到,获得积分10
3秒前
pp发布了新的文献求助10
4秒前
LW发布了新的文献求助10
4秒前
科研通AI6应助11采纳,获得10
4秒前
Xin关注了科研通微信公众号
5秒前
6秒前
无情念双发布了新的文献求助10
6秒前
慕青应助大神牛猪羊采纳,获得10
7秒前
ZQZ完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
科研通AI6应助wingmay采纳,获得10
8秒前
Gemination完成签到,获得积分10
8秒前
充电宝应助xiaotingMa采纳,获得10
8秒前
8秒前
8秒前
顾矜应助xn201120采纳,获得10
8秒前
9秒前
谁与争锋发布了新的文献求助30
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
小马甲应助jing122061采纳,获得10
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
Jonathan完成签到,获得积分10
11秒前
满意的凌雪完成签到,获得积分20
11秒前
泡泡发布了新的文献求助10
12秒前
12秒前
Raymond应助橙色采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661227
求助须知:如何正确求助?哪些是违规求助? 4837867
关于积分的说明 15094878
捐赠科研通 4819976
什么是DOI,文献DOI怎么找? 2579690
邀请新用户注册赠送积分活动 1533972
关于科研通互助平台的介绍 1492764