清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A photovoltaic surface defect detection method for building based on deep learning

光伏系统 计算机科学 可靠性(半导体) 推论 光伏 人工智能 深度学习 可再生能源 可靠性工程 工程类 电气工程 功率(物理) 量子力学 物理
作者
Yukang Cao,Dandan Pang,Yi Yan,Yongqing Jiang,Chongyi Tian
出处
期刊:Journal of building engineering [Elsevier]
卷期号:70: 106375-106375 被引量:48
标识
DOI:10.1016/j.jobe.2023.106375
摘要

The inspection and diagnosis of building engineering involve health monitoring of buildings and related facilities, and the utilization of renewable energy, such as solar energy, is crucial for smooth operation of modern construction projects. The detection of solar panel defects is related to the reliability and efficiency of building photovoltaics and has become a field of concern. Using deep learning to detect defects can improve the stability of building photovoltaics. However, achieving a balance between algorithm accuracy and reasoning speed requires further study. This paper presents an improved algorithm based on YOLO-v5, named YOLOv5s-GBC, which improves accuracy and inference speed. This demonstrates the advantages of fast and accurate photovoltaic defect detection. Based on the classical YOLO-v5 algorithm, the attention mechanism and bidirectional feature pyramid network were adopted to improve the accuracy of defect detection. Then, the lightweight module GhostConv and the Gaussian error linear unit activation function were used to reduce the number of model parameters and improve the reasoning speed. Further, the defect dataset of electroluminescence images proposed by the 35th European Photovoltaic Solar Energy Conference and Exhibition was used to verify the effectiveness of the proposed method. The experimental results show that YOLOv5s-GBC is superior to the original method in many evaluation indices, i.e., the accuracy and inference speed were increased by 2% and 20.3%, respectively. In conclusion, YOLOv5s-GBC exhibited better performance compared to other deep learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
21秒前
满意灵完成签到,获得积分10
48秒前
今后应助淡定的过客采纳,获得10
1分钟前
dolphin完成签到 ,获得积分0
1分钟前
老石完成签到 ,获得积分10
1分钟前
砰砰完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
斯文败类应助joker采纳,获得10
3分钟前
3分钟前
sdjjis完成签到 ,获得积分10
3分钟前
joker发布了新的文献求助10
3分钟前
hwen1998完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
李健应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
5分钟前
曙光完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
研友_nxw2xL完成签到,获得积分10
6分钟前
muriel完成签到,获得积分0
6分钟前
如歌完成签到,获得积分10
6分钟前
6分钟前
披着羊皮的狼完成签到 ,获得积分10
6分钟前
6分钟前
8分钟前
蝎子莱莱xth完成签到,获得积分10
8分钟前
充电宝应助Barry采纳,获得10
8分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
8分钟前
Square完成签到,获得积分10
8分钟前
轻松戎发布了新的文献求助10
8分钟前
脑洞疼应助轻松戎采纳,获得10
8分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418435
求助须知:如何正确求助?哪些是违规求助? 4534151
关于积分的说明 14143199
捐赠科研通 4450380
什么是DOI,文献DOI怎么找? 2441186
邀请新用户注册赠送积分活动 1432941
关于科研通互助平台的介绍 1410307