A photovoltaic surface defect detection method for building based on deep learning

光伏系统 计算机科学 可靠性(半导体) 推论 光伏 人工智能 深度学习 可再生能源 可靠性工程 工程类 电气工程 功率(物理) 物理 量子力学
作者
Yukang Cao,Dandan Pang,Yi Yan,Yongqing Jiang,Chongyi Tian
出处
期刊:Journal of building engineering [Elsevier]
卷期号:70: 106375-106375 被引量:54
标识
DOI:10.1016/j.jobe.2023.106375
摘要

The inspection and diagnosis of building engineering involve health monitoring of buildings and related facilities, and the utilization of renewable energy, such as solar energy, is crucial for smooth operation of modern construction projects. The detection of solar panel defects is related to the reliability and efficiency of building photovoltaics and has become a field of concern. Using deep learning to detect defects can improve the stability of building photovoltaics. However, achieving a balance between algorithm accuracy and reasoning speed requires further study. This paper presents an improved algorithm based on YOLO-v5, named YOLOv5s-GBC, which improves accuracy and inference speed. This demonstrates the advantages of fast and accurate photovoltaic defect detection. Based on the classical YOLO-v5 algorithm, the attention mechanism and bidirectional feature pyramid network were adopted to improve the accuracy of defect detection. Then, the lightweight module GhostConv and the Gaussian error linear unit activation function were used to reduce the number of model parameters and improve the reasoning speed. Further, the defect dataset of electroluminescence images proposed by the 35th European Photovoltaic Solar Energy Conference and Exhibition was used to verify the effectiveness of the proposed method. The experimental results show that YOLOv5s-GBC is superior to the original method in many evaluation indices, i.e., the accuracy and inference speed were increased by 2% and 20.3%, respectively. In conclusion, YOLOv5s-GBC exhibited better performance compared to other deep learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默香芦发布了新的文献求助10
刚刚
1秒前
orixero应助grant采纳,获得10
2秒前
豆豆发布了新的文献求助10
2秒前
2秒前
lili发布了新的文献求助10
2秒前
李健的小迷弟应助Jackie采纳,获得10
2秒前
深情安青应助默默的裘采纳,获得10
2秒前
小池发布了新的文献求助10
3秒前
高大的泥猴桃应助wyy采纳,获得10
3秒前
3秒前
无花果应助努力的欢欢采纳,获得10
4秒前
4秒前
田様应助小启采纳,获得10
4秒前
4秒前
4秒前
典雅的依秋完成签到,获得积分10
4秒前
shuyu完成签到,获得积分10
5秒前
5秒前
科目三应助me采纳,获得10
5秒前
catherine完成签到,获得积分10
5秒前
wqqq发布了新的文献求助10
6秒前
LJL完成签到,获得积分10
6秒前
英姑应助紧张的毛衣采纳,获得10
6秒前
smottom应助xiaojie采纳,获得10
6秒前
jackdawjo发布了新的文献求助10
6秒前
文章快到碗里来完成签到 ,获得积分10
6秒前
7秒前
乐观鑫鹏发布了新的文献求助10
7秒前
7秒前
沉默香芦完成签到,获得积分10
7秒前
8秒前
妞妞妈发布了新的文献求助40
8秒前
8秒前
Twonej应助完美小蘑菇采纳,获得30
8秒前
无心的青文完成签到,获得积分10
8秒前
搞怪孤丝完成签到 ,获得积分10
8秒前
科研通AI6.1应助zzy采纳,获得10
9秒前
青霜发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760069
求助须知:如何正确求助?哪些是违规求助? 5523381
关于积分的说明 15396422
捐赠科研通 4896997
什么是DOI,文献DOI怎么找? 2634002
邀请新用户注册赠送积分活动 1582062
关于科研通互助平台的介绍 1537519