亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A photovoltaic surface defect detection method for building based on deep learning

光伏系统 计算机科学 可靠性(半导体) 推论 光伏 人工智能 深度学习 可再生能源 可靠性工程 工程类 电气工程 功率(物理) 物理 量子力学
作者
Yukang Cao,Dandan Pang,Yi Yan,Yongqing Jiang,Chongyi Tian
出处
期刊:Journal of building engineering [Elsevier]
卷期号:70: 106375-106375 被引量:48
标识
DOI:10.1016/j.jobe.2023.106375
摘要

The inspection and diagnosis of building engineering involve health monitoring of buildings and related facilities, and the utilization of renewable energy, such as solar energy, is crucial for smooth operation of modern construction projects. The detection of solar panel defects is related to the reliability and efficiency of building photovoltaics and has become a field of concern. Using deep learning to detect defects can improve the stability of building photovoltaics. However, achieving a balance between algorithm accuracy and reasoning speed requires further study. This paper presents an improved algorithm based on YOLO-v5, named YOLOv5s-GBC, which improves accuracy and inference speed. This demonstrates the advantages of fast and accurate photovoltaic defect detection. Based on the classical YOLO-v5 algorithm, the attention mechanism and bidirectional feature pyramid network were adopted to improve the accuracy of defect detection. Then, the lightweight module GhostConv and the Gaussian error linear unit activation function were used to reduce the number of model parameters and improve the reasoning speed. Further, the defect dataset of electroluminescence images proposed by the 35th European Photovoltaic Solar Energy Conference and Exhibition was used to verify the effectiveness of the proposed method. The experimental results show that YOLOv5s-GBC is superior to the original method in many evaluation indices, i.e., the accuracy and inference speed were increased by 2% and 20.3%, respectively. In conclusion, YOLOv5s-GBC exhibited better performance compared to other deep learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
余闻问发布了新的文献求助10
7秒前
zoiaii完成签到 ,获得积分10
10秒前
张志超发布了新的文献求助10
10秒前
mmyhn发布了新的文献求助10
13秒前
Metx完成签到 ,获得积分10
14秒前
18秒前
科研小菜鸟完成签到,获得积分10
24秒前
28秒前
林狗完成签到 ,获得积分10
29秒前
30秒前
H_W完成签到 ,获得积分10
31秒前
yuanyuan发布了新的文献求助10
32秒前
科研通AI6应助科研小菜鸟采纳,获得30
39秒前
科研通AI2S应助丁又菡采纳,获得50
40秒前
42秒前
YAKI完成签到,获得积分10
45秒前
丰富青雪发布了新的文献求助10
46秒前
搜集达人应助Seeking采纳,获得10
47秒前
科研通AI6应助一个西藏采纳,获得10
47秒前
思源应助勇敢且鲁班采纳,获得10
49秒前
彭于晏应助Zenia采纳,获得10
55秒前
清爽的又夏完成签到,获得积分10
56秒前
56秒前
情怀应助YAKI采纳,获得10
58秒前
59秒前
英姑应助清爽的又夏采纳,获得10
1分钟前
寒冷河马完成签到,获得积分10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
1分钟前
Demi_Ming完成签到,获得积分10
1分钟前
1分钟前
斯文败类应助yuanyuan采纳,获得10
1分钟前
任性的水风完成签到,获得积分10
1分钟前
丰富青雪完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599649
求助须知:如何正确求助?哪些是违规求助? 4685351
关于积分的说明 14838420
捐赠科研通 4669743
什么是DOI,文献DOI怎么找? 2538130
邀请新用户注册赠送积分活动 1505503
关于科研通互助平台的介绍 1470898