亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Chinese Clinical Named Entity Recognition from Electronic Medical Records based on Multi-semantic Features by using RoBERTa-wwm and CNN: Model Development and Validation (Preprint)

计算机科学 情报检索 卷积神经网络 自然语言处理 医学诊断 命名实体识别 人工智能 语义学(计算机科学) 医学 管理 病理 程序设计语言 经济 任务(项目管理)
作者
Weijie Wang,Xiaoying Li,Huiling Ren,Dongping Gao,An Fang
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:11: e44597-e44597
标识
DOI:10.2196/44597
摘要

Clinical electronic medical records (EMRs) contain important information on patients' anatomy, symptoms, examinations, diagnoses, and medications. Large-scale mining of rich medical information from EMRs will provide notable reference value for medical research. With the complexity of Chinese grammar and blurred boundaries of Chinese words, Chinese clinical named entity recognition (CNER) remains a notable challenge. Follow-up tasks such as medical entity structuring, medical entity standardization, medical entity relationship extraction, and medical knowledge graph construction largely depend on medical named entity recognition effects. A promising CNER result would provide reliable support for building domain knowledge graphs, knowledge bases, and knowledge retrieval systems. Furthermore, it would provide research ideas for scientists and medical decision-making references for doctors and even guide patients on disease and health management. Therefore, obtaining excellent CNER results is essential.We aimed to propose a Chinese CNER method to learn semantics-enriched representations for comprehensively enhancing machines to understand deep semantic information of EMRs by using multisemantic features, which makes medical information more readable and understandable.First, we used Robustly Optimized Bidirectional Encoder Representation from Transformers Pretraining Approach Whole Word Masking (RoBERTa-wwm) with dynamic fusion and Chinese character features, including 5-stroke code, Zheng code, phonological code, and stroke code, extracted by 1-dimensional convolutional neural networks (CNNs) to obtain fine-grained semantic features of Chinese characters. Subsequently, we converted Chinese characters into square images to obtain Chinese character image features from another modality by using a 2-dimensional CNN. Finally, we input multisemantic features into Bidirectional Long Short-Term Memory with Conditional Random Fields to achieve Chinese CNER. The effectiveness of our model was compared with that of the baseline and existing research models, and the features involved in the model were ablated and analyzed to verify the model's effectiveness.We collected 1379 Yidu-S4K EMRs containing 23,655 entities in 6 categories and 2007 self-annotated EMRs containing 118,643 entities in 7 categories. The experiments showed that our model outperformed the comparison experiments, with F1-scores of 89.28% and 84.61% on the Yidu-S4K and self-annotated data sets, respectively. The results of the ablation analysis demonstrated that each feature and method we used could improve the entity recognition ability.Our proposed CNER method would mine the richer deep semantic information in EMRs by multisemantic embedding using RoBERTa-wwm and CNNs, enhancing the semantic recognition of characters at different granularity levels and improving the generalization capability of the method by achieving information complementarity among different semantic features, thus making the machine semantically understand EMRs and improving the CNER task accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
6秒前
6秒前
然然发布了新的文献求助10
11秒前
吴彦祖发布了新的文献求助10
11秒前
18秒前
闪闪的YOSH完成签到,获得积分10
22秒前
26秒前
大模型应助鸣蜩阿六采纳,获得10
30秒前
33秒前
39秒前
鸣蜩阿六发布了新的文献求助10
43秒前
彭于晏应助科研猫头鹰采纳,获得10
45秒前
从容芮应助科研通管家采纳,获得50
49秒前
大模型应助科研通管家采纳,获得10
49秒前
小马甲应助科研通管家采纳,获得10
49秒前
饱满烙完成签到 ,获得积分10
49秒前
阿童木完成签到 ,获得积分10
53秒前
尺子尺子和池子完成签到 ,获得积分10
56秒前
缓慢的翅膀完成签到,获得积分10
59秒前
jyy应助Sooinlee采纳,获得10
59秒前
1分钟前
wanting发布了新的文献求助10
1分钟前
赘婿应助fengyuke采纳,获得10
1分钟前
1分钟前
科研猫头鹰完成签到,获得积分10
1分钟前
玩命的十三完成签到 ,获得积分10
1分钟前
温暖的化蛹完成签到,获得积分20
1分钟前
wanting完成签到,获得积分10
1分钟前
吴彦祖发布了新的文献求助10
1分钟前
1分钟前
1分钟前
带头大哥应助科研王者采纳,获得200
1分钟前
2568269431发布了新的文献求助10
1分钟前
rubbish发布了新的文献求助10
1分钟前
慕青应助鸣蜩阿六采纳,获得10
1分钟前
Geist完成签到 ,获得积分10
1分钟前
上官若男应助超脱闲人采纳,获得10
1分钟前
2568269431完成签到,获得积分10
1分钟前
esbd完成签到,获得积分10
1分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256828
求助须知:如何正确求助?哪些是违规求助? 2898958
关于积分的说明 8303154
捐赠科研通 2568204
什么是DOI,文献DOI怎么找? 1394905
科研通“疑难数据库(出版商)”最低求助积分说明 652924
邀请新用户注册赠送积分活动 630631