已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Chinese Clinical Named Entity Recognition from Electronic Medical Records based on Multi-semantic Features by using RoBERTa-wwm and CNN: Model Development and Validation (Preprint)

计算机科学 情报检索 卷积神经网络 自然语言处理 医学诊断 命名实体识别 人工智能 语义学(计算机科学) 医学 管理 病理 程序设计语言 经济 任务(项目管理)
作者
Weijie Wang,Xiaoying Li,Huiling Ren,Dongping Gao,An Fang
出处
期刊:JMIR medical informatics [JMIR Publications]
卷期号:11: e44597-e44597
标识
DOI:10.2196/44597
摘要

Clinical electronic medical records (EMRs) contain important information on patients' anatomy, symptoms, examinations, diagnoses, and medications. Large-scale mining of rich medical information from EMRs will provide notable reference value for medical research. With the complexity of Chinese grammar and blurred boundaries of Chinese words, Chinese clinical named entity recognition (CNER) remains a notable challenge. Follow-up tasks such as medical entity structuring, medical entity standardization, medical entity relationship extraction, and medical knowledge graph construction largely depend on medical named entity recognition effects. A promising CNER result would provide reliable support for building domain knowledge graphs, knowledge bases, and knowledge retrieval systems. Furthermore, it would provide research ideas for scientists and medical decision-making references for doctors and even guide patients on disease and health management. Therefore, obtaining excellent CNER results is essential.We aimed to propose a Chinese CNER method to learn semantics-enriched representations for comprehensively enhancing machines to understand deep semantic information of EMRs by using multisemantic features, which makes medical information more readable and understandable.First, we used Robustly Optimized Bidirectional Encoder Representation from Transformers Pretraining Approach Whole Word Masking (RoBERTa-wwm) with dynamic fusion and Chinese character features, including 5-stroke code, Zheng code, phonological code, and stroke code, extracted by 1-dimensional convolutional neural networks (CNNs) to obtain fine-grained semantic features of Chinese characters. Subsequently, we converted Chinese characters into square images to obtain Chinese character image features from another modality by using a 2-dimensional CNN. Finally, we input multisemantic features into Bidirectional Long Short-Term Memory with Conditional Random Fields to achieve Chinese CNER. The effectiveness of our model was compared with that of the baseline and existing research models, and the features involved in the model were ablated and analyzed to verify the model's effectiveness.We collected 1379 Yidu-S4K EMRs containing 23,655 entities in 6 categories and 2007 self-annotated EMRs containing 118,643 entities in 7 categories. The experiments showed that our model outperformed the comparison experiments, with F1-scores of 89.28% and 84.61% on the Yidu-S4K and self-annotated data sets, respectively. The results of the ablation analysis demonstrated that each feature and method we used could improve the entity recognition ability.Our proposed CNER method would mine the richer deep semantic information in EMRs by multisemantic embedding using RoBERTa-wwm and CNNs, enhancing the semantic recognition of characters at different granularity levels and improving the generalization capability of the method by achieving information complementarity among different semantic features, thus making the machine semantically understand EMRs and improving the CNER task accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中书易完成签到,获得积分10
刚刚
聆琳完成签到 ,获得积分10
2秒前
123完成签到 ,获得积分10
5秒前
hob完成签到,获得积分10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
ceeray23应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
czz014完成签到,获得积分10
9秒前
有缘人完成签到,获得积分10
14秒前
辣椒完成签到 ,获得积分10
14秒前
瘦瘦乌龟完成签到 ,获得积分10
15秒前
16秒前
Amu1uu完成签到,获得积分10
17秒前
小湛完成签到 ,获得积分10
18秒前
李大刚完成签到 ,获得积分10
19秒前
时云雁完成签到,获得积分20
19秒前
lina完成签到 ,获得积分10
19秒前
上官若男应助zzhuangyeah采纳,获得10
21秒前
Zyhaou发布了新的文献求助10
21秒前
隐形松完成签到 ,获得积分10
22秒前
22秒前
量子星尘发布了新的文献求助10
24秒前
YK完成签到,获得积分10
26秒前
黑黑嘿发布了新的文献求助10
27秒前
rumengren完成签到 ,获得积分10
27秒前
Avery完成签到 ,获得积分10
28秒前
oscar完成签到,获得积分10
28秒前
云上人完成签到 ,获得积分10
30秒前
酷酷的王完成签到 ,获得积分10
31秒前
黑黑嘿完成签到,获得积分20
32秒前
小席要进步完成签到 ,获得积分10
36秒前
38秒前
grs完成签到,获得积分10
38秒前
风中琦完成签到 ,获得积分10
39秒前
Naixichaohaohe完成签到,获得积分10
39秒前
丘比特应助认真丹蝶采纳,获得50
41秒前
英姑应助黑黑嘿采纳,获得10
42秒前
北极星发布了新的文献求助10
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953303
求助须知:如何正确求助?哪些是违规求助? 3498808
关于积分的说明 11093081
捐赠科研通 3229324
什么是DOI,文献DOI怎么找? 1785293
邀请新用户注册赠送积分活动 869378
科研通“疑难数据库(出版商)”最低求助积分说明 801439