已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

LKAN: LLM-Based Knowledge-Aware Attention Network for Clinical Staging of Liver Cancer

计算机科学 肝癌 癌症 人工智能 医学物理学 医学 内科学
作者
Ya Li,Xuecong Zheng,Jiaping Li,Qingyun Dai,Chang‐Dong Wang,Min Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/jbhi.2024.3478809
摘要

Clinical staging of liver cancer (CSoLC), an important indicator for evaluating the degree of deterioration of primary liver cancer cells (PLCCs), is key in the diagnosis, treatment, and rehabilitation of liver cancer. In China, the current CSoLC adopts the China liver cancer (CNLC) staging, which is usually evaluated by clinicians based on the patient's radiology reports. Therefore, inferring clinical information from unstructured radiology reports can provide auxiliary decision support for clinicians. The key to solving the challenging task is to guide the model to pay attention to the staging-related words or sentences, and the following issues may occur: 1) Imbalanced categories: The symptoms of liver cancer in the early- or mid-stage are not obvious, resulting in more data in the end-stage. 2) Domain sensitivity of liver cancer data: The liver cancer dataset contains a large amount of domain knowledge, and the conventional methods can exacerbate out-of-vocabulary, which greatly affects the accuracy of classification. 3) Free-text and lengthy report: The radiology report of liver cancer sparsely describes various lesions with domain-specific terms, which poses difficulties in mining key information related to staging. To tackle these challenges, this article proposes a large language model (LLM)-based Knowledge-aware Attention Network (LKAN) for CSoLC. First, for maintaining semantic consistency, LLM and a rule-based algorithm are integrated to generate more diverse and reasonable data. Second, unlabeled radiology corpus of liver cancer are pre-trained to introduce domain knowledge for subsequent representation learning. Third, attention is improved by incorporating both global and local features, which can provide professional guidance for the classifier to focus on the important information. Compared with the baseline models, the classification accuracy of LKAN has achieved the best results with 90.3% Accuracy, 90.0% Macro_F1 score, and 90.0% Macro_Recall. The code is available at https://github.com/xczhh/Supplemental-Material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助王壕采纳,获得10
1秒前
雷晨晨完成签到 ,获得积分10
2秒前
4秒前
土又鸟发布了新的文献求助10
4秒前
6秒前
6秒前
麻辣小龙虾完成签到,获得积分10
7秒前
7秒前
Zhou完成签到,获得积分10
7秒前
独特忆灵完成签到,获得积分10
12秒前
俏皮短靴发布了新的文献求助10
13秒前
慕青应助土又鸟采纳,获得10
13秒前
14秒前
14秒前
保奔完成签到,获得积分10
15秒前
TonyLee完成签到,获得积分10
15秒前
小马甲应助wop111采纳,获得10
16秒前
123发布了新的文献求助10
19秒前
银玥完成签到,获得积分20
23秒前
24秒前
华仔应助YT采纳,获得10
26秒前
保奔发布了新的文献求助10
29秒前
31秒前
jzx完成签到,获得积分10
31秒前
啊魏发布了新的文献求助10
33秒前
木头人发布了新的文献求助10
35秒前
zyzraylene完成签到,获得积分10
36秒前
y一一完成签到 ,获得积分10
38秒前
39秒前
磐xst完成签到 ,获得积分10
40秒前
徐1完成签到 ,获得积分10
41秒前
46秒前
JETSTREAM完成签到,获得积分10
50秒前
奋进的熊完成签到,获得积分10
50秒前
爱笑纸鹤发布了新的文献求助10
50秒前
花陵完成签到 ,获得积分10
50秒前
50秒前
hxt完成签到,获得积分10
52秒前
wanci应助Self-made采纳,获得10
53秒前
桐桐应助木禾采纳,获得10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301612
求助须知:如何正确求助?哪些是违规求助? 4449085
关于积分的说明 13847800
捐赠科研通 4335167
什么是DOI,文献DOI怎么找? 2380143
邀请新用户注册赠送积分活动 1375107
关于科研通互助平台的介绍 1341144