LKAN: LLM-Based Knowledge-Aware Attention Network for Clinical Staging of Liver Cancer

计算机科学 肝癌 癌症 人工智能 医学物理学 医学 内科学
作者
Ya Li,Xuecong Zheng,Jiaping Li,Qingyun Dai,Chang‐Dong Wang,Min Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (4): 3007-3020 被引量:4
标识
DOI:10.1109/jbhi.2024.3478809
摘要

Clinical staging of liver cancer (CSoLC), an important indicator for evaluating primary liver cancer (PLC), is key in the diagnosis, treatment, and rehabilitation of liver cancer. In China, the current CSoLC adopts the China liver cancer (CNLC) staging, which is usually evaluated by clinicians based on radiology reports. Therefore, inferring clinical information from unstructured radiology reports can provide auxiliary decision support for clinicians. The key to solving the challenging task is to guide the model to pay attention to the staging-related words or sentences, and the following issues may occur: 1) Imbalanced categories: Early- and mid-stage liver cancer symptoms are subtle, resulting in more data in the end-stage. 2) Domain sensitivity of liver cancer data: The liver cancer dataset contains substantial domain knowledge, leading to out-of-vocabulary issues and reduced classification accuracy. 3) Free-text and lengthy report: Radiology reports sparsely describe various lesions using domain-specific terms, making it hard to mine staging-related information. To address these, this article proposes a large language model (LLM)-based Knowledge-aware Attention Network (LKAN) for CSoLC. First, for maintaining semantic consistency, LLM and a rule-based algorithm are integrated to generate more diverse and reasonable data. Second, an unlabeled radiology corpus is pre-trained to introduce domain knowledge for subsequent representation learning. Third, attention is improved by incorporating both global and local features to guide the model's focus on staging-relevant information. Compared with the baseline models, LKAN has achieved the best results with 90.3% Accuracy, 90.0% Macro_F1 score, and 90.0% Macro_Recall.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助丰富的河马采纳,获得10
刚刚
斯文败类应助丰富的河马采纳,获得10
1秒前
慕青应助丰富的河马采纳,获得50
1秒前
AN应助丰富的河马采纳,获得10
1秒前
ccm应助丰富的河马采纳,获得10
1秒前
wenyuLuo完成签到,获得积分10
1秒前
追寻清完成签到,获得积分10
1秒前
2秒前
xxf完成签到,获得积分10
2秒前
pyt发布了新的文献求助30
2秒前
调皮的大炮完成签到 ,获得积分10
4秒前
魏欣雨完成签到,获得积分10
4秒前
jzt12138发布了新的文献求助10
5秒前
一一应助第二支羽毛采纳,获得10
6秒前
老实小虾米完成签到,获得积分10
7秒前
栗悟饭完成签到,获得积分10
8秒前
星落枝头完成签到,获得积分20
8秒前
Lucas应助永和采纳,获得10
8秒前
潇潇发布了新的文献求助10
9秒前
9秒前
Jasper应助MingQue采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
大个应助000采纳,获得10
10秒前
星落枝头发布了新的文献求助10
11秒前
呜啦啦完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
可爱的函函应助pyt采纳,获得30
12秒前
JJW发布了新的文献求助10
13秒前
Jasper应助jzt12138采纳,获得10
15秒前
evans完成签到,获得积分10
15秒前
皮蛋发布了新的文献求助10
16秒前
16秒前
16秒前
19秒前
NOVEICE完成签到,获得积分20
19秒前
啤酒半斤完成签到,获得积分10
19秒前
研友_GZbV4Z完成签到,获得积分10
19秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667