LKAN: LLM-Based Knowledge-Aware Attention Network for Clinical Staging of Liver Cancer

计算机科学 肝癌 癌症 人工智能 医学物理学 医学 内科学
作者
Ya Li,Xuecong Zheng,Jiaping Li,Qingyun Dai,Chang‐Dong Wang,Min Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2024.3478809
摘要

Clinical staging of liver cancer (CSoLC), an important indicator for evaluating the degree of deterioration of primary liver cancer cells (PLCCs), is key in the diagnosis, treatment, and rehabilitation of liver cancer. In China, the current CSoLC adopts the China liver cancer (CNLC) staging, which is usually evaluated by clinicians based on the patient's radiology reports. Therefore, inferring clinical information from unstructured radiology reports can provide auxiliary decision support for clinicians. The key to solving the challenging task is to guide the model to pay attention to the staging-related words or sentences, and the following issues may occur: 1) Imbalanced categories: The symptoms of liver cancer in the early- or mid-stage are not obvious, resulting in more data in the end-stage. 2) Domain sensitivity of liver cancer data: The liver cancer dataset contains a large amount of domain knowledge, and the conventional methods can exacerbate out-of-vocabulary, which greatly affects the accuracy of classification. 3) Free-text and lengthy report: The radiology report of liver cancer sparsely describes various lesions with domain-specific terms, which poses difficulties in mining key information related to staging. To tackle these challenges, this article proposes a large language model (LLM)-based Knowledge-aware Attention Network (LKAN) for CSoLC. First, for maintaining semantic consistency, LLM and a rule-based algorithm are integrated to generate more diverse and reasonable data. Second, unlabeled radiology corpus of liver cancer are pre-trained to introduce domain knowledge for subsequent representation learning. Third, attention is improved by incorporating both global and local features, which can provide professional guidance for the classifier to focus on the important information. Compared with the baseline models, the classification accuracy of LKAN has achieved the best results with 90.3% Accuracy, 90.0% Macro_F1 score, and 90.0% Macro_Recall. The code is available at https://github.com/xczhh/Supplemental-Material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助星星采纳,获得10
刚刚
刚刚
木野狐发布了新的文献求助10
刚刚
1秒前
搬砖道人发布了新的文献求助10
1秒前
自然的初丹完成签到,获得积分20
1秒前
泡泡鱼完成签到 ,获得积分10
2秒前
柳叶完成签到,获得积分10
2秒前
杂货铺老板娘完成签到,获得积分10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
通~发布了新的文献求助10
2秒前
soso应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
3秒前
dyh6802完成签到,获得积分10
3秒前
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
kk应助科研通管家采纳,获得20
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得20
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
平常的G应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
正版DY发布了新的文献求助20
4秒前
4秒前
拈花发布了新的文献求助10
4秒前
fengzi151完成签到,获得积分10
4秒前
5秒前
巧巧完成签到,获得积分10
5秒前
乐悠完成签到 ,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794