LKAN: LLM-Based Knowledge-Aware Attention Network for Clinical Staging of Liver Cancer

计算机科学 肝癌 癌症 人工智能 医学物理学 医学 内科学
作者
Ya Li,Xuecong Zheng,Jiaping Li,Qingyun Dai,Chang‐Dong Wang,Min Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (4): 3007-3020 被引量:4
标识
DOI:10.1109/jbhi.2024.3478809
摘要

Clinical staging of liver cancer (CSoLC), an important indicator for evaluating primary liver cancer (PLC), is key in the diagnosis, treatment, and rehabilitation of liver cancer. In China, the current CSoLC adopts the China liver cancer (CNLC) staging, which is usually evaluated by clinicians based on radiology reports. Therefore, inferring clinical information from unstructured radiology reports can provide auxiliary decision support for clinicians. The key to solving the challenging task is to guide the model to pay attention to the staging-related words or sentences, and the following issues may occur: 1) Imbalanced categories: Early- and mid-stage liver cancer symptoms are subtle, resulting in more data in the end-stage. 2) Domain sensitivity of liver cancer data: The liver cancer dataset contains substantial domain knowledge, leading to out-of-vocabulary issues and reduced classification accuracy. 3) Free-text and lengthy report: Radiology reports sparsely describe various lesions using domain-specific terms, making it hard to mine staging-related information. To address these, this article proposes a large language model (LLM)-based Knowledge-aware Attention Network (LKAN) for CSoLC. First, for maintaining semantic consistency, LLM and a rule-based algorithm are integrated to generate more diverse and reasonable data. Second, an unlabeled radiology corpus is pre-trained to introduce domain knowledge for subsequent representation learning. Third, attention is improved by incorporating both global and local features to guide the model's focus on staging-relevant information. Compared with the baseline models, LKAN has achieved the best results with 90.3% Accuracy, 90.0% Macro_F1 score, and 90.0% Macro_Recall.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉觅云应助刘海婷采纳,获得10
3秒前
idiot发布了新的文献求助10
3秒前
稳重一鸣发布了新的文献求助10
3秒前
6秒前
情怀应助D-L@rabbit采纳,获得10
6秒前
6秒前
my123发布了新的文献求助10
7秒前
hhhhhh完成签到,获得积分10
7秒前
英俊的铭应助123采纳,获得10
9秒前
9秒前
SciGPT应助liao采纳,获得10
9秒前
Yue完成签到,获得积分10
9秒前
9秒前
10秒前
科研通AI2S应助包凡之采纳,获得10
10秒前
所所应助包凡之采纳,获得10
10秒前
852应助包凡之采纳,获得10
10秒前
科研通AI2S应助包凡之采纳,获得10
11秒前
CipherSage应助包凡之采纳,获得10
11秒前
11秒前
hui发布了新的文献求助10
11秒前
Hello应助小化采纳,获得10
11秒前
SciGPT应助sparks采纳,获得10
11秒前
12秒前
12秒前
喵拟吗喵发布了新的文献求助10
12秒前
研友_nEoEy8完成签到,获得积分10
13秒前
14秒前
hhhhhh发布了新的文献求助10
14秒前
谨慎易文发布了新的文献求助10
15秒前
16秒前
16秒前
咩咩兔完成签到,获得积分10
17秒前
17秒前
18秒前
今夜无人入眠完成签到,获得积分20
20秒前
hjy发布了新的文献求助10
20秒前
咩咩兔发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589919
求助须知:如何正确求助?哪些是违规求助? 4674386
关于积分的说明 14793761
捐赠科研通 4629344
什么是DOI,文献DOI怎么找? 2532468
邀请新用户注册赠送积分活动 1501123
关于科研通互助平台的介绍 1468527