亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LKAN: LLM-Based Knowledge-Aware Attention Network for Clinical Staging of Liver Cancer

计算机科学 肝癌 癌症 人工智能 医学物理学 医学 内科学
作者
Ya Li,Xuecong Zheng,Jiaping Li,Qingyun Dai,Chang‐Dong Wang,Min Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (4): 3007-3020 被引量:4
标识
DOI:10.1109/jbhi.2024.3478809
摘要

Clinical staging of liver cancer (CSoLC), an important indicator for evaluating primary liver cancer (PLC), is key in the diagnosis, treatment, and rehabilitation of liver cancer. In China, the current CSoLC adopts the China liver cancer (CNLC) staging, which is usually evaluated by clinicians based on radiology reports. Therefore, inferring clinical information from unstructured radiology reports can provide auxiliary decision support for clinicians. The key to solving the challenging task is to guide the model to pay attention to the staging-related words or sentences, and the following issues may occur: 1) Imbalanced categories: Early- and mid-stage liver cancer symptoms are subtle, resulting in more data in the end-stage. 2) Domain sensitivity of liver cancer data: The liver cancer dataset contains substantial domain knowledge, leading to out-of-vocabulary issues and reduced classification accuracy. 3) Free-text and lengthy report: Radiology reports sparsely describe various lesions using domain-specific terms, making it hard to mine staging-related information. To address these, this article proposes a large language model (LLM)-based Knowledge-aware Attention Network (LKAN) for CSoLC. First, for maintaining semantic consistency, LLM and a rule-based algorithm are integrated to generate more diverse and reasonable data. Second, an unlabeled radiology corpus is pre-trained to introduce domain knowledge for subsequent representation learning. Third, attention is improved by incorporating both global and local features to guide the model's focus on staging-relevant information. Compared with the baseline models, LKAN has achieved the best results with 90.3% Accuracy, 90.0% Macro_F1 score, and 90.0% Macro_Recall.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
黄黄发布了新的文献求助20
4秒前
8秒前
等待完成签到,获得积分10
10秒前
Anony发布了新的文献求助10
11秒前
勤奋的琳完成签到,获得积分20
11秒前
keyanzhang完成签到 ,获得积分10
11秒前
12秒前
勤奋的琳发布了新的文献求助10
13秒前
16秒前
浮浮世世发布了新的文献求助10
17秒前
argwew完成签到,获得积分10
27秒前
顾良完成签到 ,获得积分10
27秒前
站岗小狗完成签到 ,获得积分10
27秒前
30秒前
Anony发布了新的文献求助10
30秒前
32秒前
32秒前
Yuanyuan发布了新的文献求助10
32秒前
zyx发布了新的文献求助30
34秒前
yxf发布了新的文献求助10
37秒前
37秒前
童童完成签到,获得积分20
38秒前
Ge完成签到,获得积分10
39秒前
ANG完成签到 ,获得积分10
43秒前
Anony完成签到,获得积分10
44秒前
YifanWang应助Ge采纳,获得30
45秒前
47秒前
科研通AI6应助zyx采纳,获得10
49秒前
金平卢仙发布了新的文献求助10
53秒前
56秒前
59秒前
1分钟前
机灵的豁完成签到,获得积分10
1分钟前
馍馍完成签到 ,获得积分10
1分钟前
黄黄完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509270
求助须知:如何正确求助?哪些是违规求助? 4604243
关于积分的说明 14489522
捐赠科研通 4538962
什么是DOI,文献DOI怎么找? 2487229
邀请新用户注册赠送积分活动 1469654
关于科研通互助平台的介绍 1441902