亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LKAN: LLM-Based Knowledge-Aware Attention Network for Clinical Staging of Liver Cancer

计算机科学 肝癌 癌症 人工智能 医学物理学 医学 内科学
作者
Ya Li,Xuecong Zheng,Jiaping Li,Qingyun Dai,Chang‐Dong Wang,Min Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/jbhi.2024.3478809
摘要

Clinical staging of liver cancer (CSoLC), an important indicator for evaluating the degree of deterioration of primary liver cancer cells (PLCCs), is key in the diagnosis, treatment, and rehabilitation of liver cancer. In China, the current CSoLC adopts the China liver cancer (CNLC) staging, which is usually evaluated by clinicians based on the patient's radiology reports. Therefore, inferring clinical information from unstructured radiology reports can provide auxiliary decision support for clinicians. The key to solving the challenging task is to guide the model to pay attention to the staging-related words or sentences, and the following issues may occur: 1) Imbalanced categories: The symptoms of liver cancer in the early- or mid-stage are not obvious, resulting in more data in the end-stage. 2) Domain sensitivity of liver cancer data: The liver cancer dataset contains a large amount of domain knowledge, and the conventional methods can exacerbate out-of-vocabulary, which greatly affects the accuracy of classification. 3) Free-text and lengthy report: The radiology report of liver cancer sparsely describes various lesions with domain-specific terms, which poses difficulties in mining key information related to staging. To tackle these challenges, this article proposes a large language model (LLM)-based Knowledge-aware Attention Network (LKAN) for CSoLC. First, for maintaining semantic consistency, LLM and a rule-based algorithm are integrated to generate more diverse and reasonable data. Second, unlabeled radiology corpus of liver cancer are pre-trained to introduce domain knowledge for subsequent representation learning. Third, attention is improved by incorporating both global and local features, which can provide professional guidance for the classifier to focus on the important information. Compared with the baseline models, the classification accuracy of LKAN has achieved the best results with 90.3% Accuracy, 90.0% Macro_F1 score, and 90.0% Macro_Recall. The code is available at https://github.com/xczhh/Supplemental-Material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助fukase采纳,获得10
刚刚
szx233完成签到 ,获得积分10
3秒前
九月亦星完成签到 ,获得积分10
4秒前
5秒前
6秒前
第3行星完成签到 ,获得积分10
6秒前
乐生完成签到,获得积分10
8秒前
10秒前
科研通AI6应助yy采纳,获得30
12秒前
14秒前
duchenglin完成签到 ,获得积分10
15秒前
fukase发布了新的文献求助10
17秒前
珀拉瑞丝完成签到,获得积分10
18秒前
山山完成签到 ,获得积分10
20秒前
桐桐应助尹大大采纳,获得10
20秒前
ceeray23发布了新的文献求助20
20秒前
25秒前
科研花完成签到 ,获得积分10
27秒前
尹大大完成签到,获得积分20
29秒前
William完成签到,获得积分10
30秒前
尹大大发布了新的文献求助10
31秒前
jane123完成签到,获得积分10
35秒前
xixiazhiwang完成签到 ,获得积分10
39秒前
安烁完成签到 ,获得积分10
45秒前
嘻嘻哈哈应助端庄从凝采纳,获得10
50秒前
51秒前
ZDTT完成签到,获得积分10
56秒前
ceeray23发布了新的文献求助20
59秒前
Helen完成签到,获得积分10
1分钟前
小W完成签到 ,获得积分10
1分钟前
1分钟前
XJH完成签到,获得积分10
1分钟前
1分钟前
Lifel完成签到 ,获得积分10
1分钟前
彼岸完成签到 ,获得积分10
1分钟前
华仔应助冷艳的高山采纳,获得10
1分钟前
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
amengptsd完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376293
求助须知:如何正确求助?哪些是违规求助? 4501376
关于积分的说明 14012859
捐赠科研通 4409135
什么是DOI,文献DOI怎么找? 2422067
邀请新用户注册赠送积分活动 1414854
关于科研通互助平台的介绍 1391729