亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LKAN: LLM-Based Knowledge-Aware Attention Network for Clinical Staging of Liver Cancer

计算机科学 肝癌 癌症 人工智能 医学物理学 医学 内科学
作者
Ya Li,Xuecong Zheng,Jiaping Li,Qingyun Dai,Chang‐Dong Wang,Min Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/jbhi.2024.3478809
摘要

Clinical staging of liver cancer (CSoLC), an important indicator for evaluating the degree of deterioration of primary liver cancer cells (PLCCs), is key in the diagnosis, treatment, and rehabilitation of liver cancer. In China, the current CSoLC adopts the China liver cancer (CNLC) staging, which is usually evaluated by clinicians based on the patient's radiology reports. Therefore, inferring clinical information from unstructured radiology reports can provide auxiliary decision support for clinicians. The key to solving the challenging task is to guide the model to pay attention to the staging-related words or sentences, and the following issues may occur: 1) Imbalanced categories: The symptoms of liver cancer in the early- or mid-stage are not obvious, resulting in more data in the end-stage. 2) Domain sensitivity of liver cancer data: The liver cancer dataset contains a large amount of domain knowledge, and the conventional methods can exacerbate out-of-vocabulary, which greatly affects the accuracy of classification. 3) Free-text and lengthy report: The radiology report of liver cancer sparsely describes various lesions with domain-specific terms, which poses difficulties in mining key information related to staging. To tackle these challenges, this article proposes a large language model (LLM)-based Knowledge-aware Attention Network (LKAN) for CSoLC. First, for maintaining semantic consistency, LLM and a rule-based algorithm are integrated to generate more diverse and reasonable data. Second, unlabeled radiology corpus of liver cancer are pre-trained to introduce domain knowledge for subsequent representation learning. Third, attention is improved by incorporating both global and local features, which can provide professional guidance for the classifier to focus on the important information. Compared with the baseline models, the classification accuracy of LKAN has achieved the best results with 90.3% Accuracy, 90.0% Macro_F1 score, and 90.0% Macro_Recall. The code is available at https://github.com/xczhh/Supplemental-Material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芳芳完成签到,获得积分10
20秒前
可爱的函函应助芳芳采纳,获得10
24秒前
Orange应助坦率嫣然采纳,获得10
25秒前
852应助sam采纳,获得10
30秒前
33秒前
38秒前
sam完成签到,获得积分10
39秒前
坦率嫣然发布了新的文献求助10
39秒前
sam发布了新的文献求助10
43秒前
浮游应助sam采纳,获得10
55秒前
田様应助坦率嫣然采纳,获得10
1分钟前
共享精神应助长情胡萝卜采纳,获得10
1分钟前
1分钟前
1分钟前
Shicheng完成签到,获得积分10
1分钟前
顺心的惜蕊完成签到 ,获得积分10
1分钟前
xyj完成签到,获得积分20
1分钟前
充电宝应助xyj采纳,获得10
1分钟前
油点小鳄发布了新的文献求助10
2分钟前
甜蜜水蜜桃完成签到 ,获得积分10
2分钟前
2分钟前
ZanE完成签到,获得积分10
2分钟前
窝窝窝书完成签到,获得积分10
2分钟前
chiyu完成签到,获得积分10
3分钟前
领导范儿应助WHDD采纳,获得10
3分钟前
油点小鳄完成签到,获得积分10
3分钟前
科研通AI2S应助封尘逸动采纳,获得10
3分钟前
南桥枝完成签到 ,获得积分10
3分钟前
王金阳完成签到,获得积分10
3分钟前
3分钟前
SikY完成签到 ,获得积分10
3分钟前
精明凡双完成签到,获得积分0
3分钟前
封尘逸动发布了新的文献求助10
3分钟前
小材不菜关注了科研通微信公众号
3分钟前
油点小鳄发布了新的文献求助10
3分钟前
秦摆烂完成签到 ,获得积分10
4分钟前
盛小铃完成签到 ,获得积分10
4分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
NexusExplorer应助科研通管家采纳,获得10
4分钟前
满意远望完成签到 ,获得积分10
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137383
求助须知:如何正确求助?哪些是违规求助? 4337222
关于积分的说明 13511256
捐赠科研通 4175819
什么是DOI,文献DOI怎么找? 2289718
邀请新用户注册赠送积分活动 1290258
关于科研通互助平台的介绍 1231923