Multimodal Attention Network for Dementia Prediction

计算机科学 痴呆 人工智能 医学 病理 疾病
作者
Hsinhan Tsai,Ta-Wei Yang,Kai-Hao Ou,Tung‐Hung Su,Che Lin,Cheng‐Fu Chou
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2024.3438885
摘要

The early identification of an individual's dementia risk is crucial for disease prevention and the design of insurance products in an aging society. This study aims to accurately predict the future incidence risk of dementia in individuals by leveraging the advantages of neural networks. This is, however, complicated by the high dimensionality and sparsity of the International Classification of Diseases (ICD) codes when utilizing data from Taiwan's National Health Insurance, which includes individual profiles and medical records. Inspired by the click-through rate (CTR) problem in recommendation systems, where future user behavior is predicted based on their past consumption records, we address these challenges with a multimodal attention network for dementia (MAND), which incorporates an ICD code embedding layer and multihead self-attention to encode ICD codes and capture interactions among diseases. Additionally, we investigate the applicability of several CTR methods to the dementia prediction problem. MAND achieves an AUC of 0.9010, surpassing traditional CTR models and demonstrating its effectiveness. The highly flexible pipelined design allows for module replacement to meet specific requirements. Furthermore, the analysis of attention scores reveals diseases highly correlated with dementia, aligning with prior research and emphasizing the interpretability of the model. This research deepens our understanding of the diseases associated with dementia, and the accurate prediction provided can serve as an early warning for dementia occurrence, aiding in its prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Mine发布了新的文献求助10
1秒前
WL发布了新的文献求助10
1秒前
2秒前
米九完成签到,获得积分10
2秒前
4秒前
4秒前
5秒前
5秒前
充电宝应助linmo采纳,获得10
5秒前
5秒前
5秒前
abcc1234发布了新的文献求助10
6秒前
6秒前
Kenzonvay发布了新的文献求助10
8秒前
许宗蓥完成签到,获得积分10
8秒前
chengzi发布了新的文献求助10
8秒前
HOXXXiii完成签到,获得积分10
8秒前
tonight发布了新的文献求助10
8秒前
Jenaloe发布了新的文献求助10
9秒前
赵佳璐发布了新的文献求助10
9秒前
SciGPT应助ihtw采纳,获得10
10秒前
11秒前
11秒前
12秒前
12秒前
14秒前
FashionBoy应助ln采纳,获得10
14秒前
15秒前
Mobius发布了新的文献求助10
16秒前
stream发布了新的文献求助10
17秒前
17秒前
Jaikaran发布了新的文献求助30
17秒前
lina发布了新的文献求助10
18秒前
ty12390发布了新的文献求助10
19秒前
Jenaloe完成签到,获得积分10
19秒前
赵佳璐完成签到,获得积分20
20秒前
Mollyshimmer完成签到 ,获得积分10
21秒前
Joy完成签到 ,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951173
求助须知:如何正确求助?哪些是违规求助? 3496521
关于积分的说明 11082942
捐赠科研通 3226974
什么是DOI,文献DOI怎么找? 1784145
邀请新用户注册赠送积分活动 868219
科研通“疑难数据库(出版商)”最低求助积分说明 801089