亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multimodal Attention Network for Dementia Prediction

计算机科学 痴呆 人工智能 医学 疾病 病理
作者
Hsinhan Tsai,Ta-Wei Yang,Kai-Hao Ou,Tung‐Hung Su,Che Lin,Cheng‐Fu Chou
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2024.3438885
摘要

The early identification of an individual's dementia risk is crucial for disease prevention and the design of insurance products in an aging society. This study aims to accurately predict the future incidence risk of dementia in individuals by leveraging the advantages of neural networks. This is, however, complicated by the high dimensionality and sparsity of the International Classification of Diseases (ICD) codes when utilizing data from Taiwan's National Health Insurance, which includes individual profiles and medical records. Inspired by the click-through rate (CTR) problem in recommendation systems, where future user behavior is predicted based on their past consumption records, we address these challenges with a multimodal attention network for dementia (MAND), which incorporates an ICD code embedding layer and multihead self-attention to encode ICD codes and capture interactions among diseases. Additionally, we investigate the applicability of several CTR methods to the dementia prediction problem. MAND achieves an AUC of 0.9010, surpassing traditional CTR models and demonstrating its effectiveness. The highly flexible pipelined design allows for module replacement to meet specific requirements. Furthermore, the analysis of attention scores reveals diseases highly correlated with dementia, aligning with prior research and emphasizing the interpretability of the model. This research deepens our understanding of the diseases associated with dementia, and the accurate prediction provided can serve as an early warning for dementia occurrence, aiding in its prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助如意葶采纳,获得10
1秒前
breeze完成签到,获得积分10
1秒前
1秒前
10秒前
wang5945发布了新的文献求助10
14秒前
15秒前
乐乐应助相龙采纳,获得10
16秒前
17秒前
22秒前
上帝开玩笑完成签到,获得积分10
24秒前
Owen应助简qiu采纳,获得10
26秒前
雯小瑾完成签到 ,获得积分10
28秒前
29秒前
从容向真完成签到,获得积分10
38秒前
39秒前
brg1小王子完成签到,获得积分10
42秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
汉堡包应助科研通管家采纳,获得10
43秒前
Owen应助科研通管家采纳,获得10
43秒前
情怀应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
44秒前
小胡爱科研完成签到 ,获得积分10
44秒前
45秒前
西西弗斯完成签到,获得积分0
51秒前
小肖的KYT完成签到,获得积分10
52秒前
Owen应助朴素千愁采纳,获得10
52秒前
52秒前
李健的小迷弟应助wang5945采纳,获得10
53秒前
迅速的冬云完成签到,获得积分10
54秒前
成就的笑南完成签到 ,获得积分10
54秒前
完美世界应助长情青烟采纳,获得10
54秒前
57秒前
可靠的寒风完成签到,获得积分10
58秒前
665发布了新的文献求助10
58秒前
1分钟前
1分钟前
xiuxiuzhang完成签到 ,获得积分10
1分钟前
1分钟前
长情青烟发布了新的文献求助10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150492
求助须知:如何正确求助?哪些是违规求助? 2801847
关于积分的说明 7845829
捐赠科研通 2459207
什么是DOI,文献DOI怎么找? 1309091
科研通“疑难数据库(出版商)”最低求助积分说明 628638
版权声明 601727