A novel battery SOC estimation method based on random search optimized LSTM neural network

人工神经网络 电池(电) 估计 计算机科学 人工智能 机器学习 工程类 功率(物理) 物理 系统工程 量子力学
作者
Xuqing Chai,Shihao Li,Fengwei Liang
出处
期刊:Energy [Elsevier BV]
卷期号:306: 132583-132583 被引量:41
标识
DOI:10.1016/j.energy.2024.132583
摘要

Battery state of charge (SOC) estimation is crucial for assessing electric vehicle safety and evaluating the remaining driving range. Owing to the complexity, variability of operating conditions, and the highly nonlinear internal mechanisms of batteries, accurate SOC estimation remains a focal point of current research. Therefore, this paper proposes a random search optimization-based Long Short-Term Memory (RS-LSTM) neural network for precise SOC estimation. The paper firstly uses the CALCE dataset, extracting discharge capacity and discharge energy as critical features from six battery parameters by employing the random forest algorithm. The Look-back, Epoch, Batch size, and Learning rate parameters in the LSTM neural network optimized by random search algorithm. The study result reveals optimal settings (Look back: 45, Epoch: 177, Batch size: 64, Learning rate: 0.0026) achieving superior estimation accuracy, evidenced by mean average error(MAE) and root mean square error(RMSE)of 0.221 % and 0.262 %, respectively. Furthermore, the method's superiority, effectiveness, robustness, and applicability were verified by conducting tests across various estimation methods, various SOC estimation intervals, various temperature conditions, the addition of Gaussian noise, and tests on experimental and real-world vehicle data. The research process demonstrates that the proposed method has superior precision and indicates promising potential for future applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6666669完成签到,获得积分10
刚刚
AFM完成签到 ,获得积分10
刚刚
刚刚
刚刚
Antheali应助123采纳,获得10
1秒前
1秒前
无私泥猴桃应助李嘉乐采纳,获得10
1秒前
orixero应助lim采纳,获得10
2秒前
2秒前
bkagyin应助诸葛朝雪采纳,获得10
2秒前
2秒前
biu发布了新的文献求助10
3秒前
解语花发布了新的文献求助10
3秒前
研友_VZG7GZ应助任性的冷梅采纳,获得10
3秒前
4秒前
充电宝应助water采纳,获得10
4秒前
科目三应助无私的以云采纳,获得10
4秒前
4秒前
Pursue发布了新的文献求助10
4秒前
5秒前
5秒前
儒雅的斑马完成签到,获得积分10
5秒前
lu完成签到,获得积分10
6秒前
6秒前
感谢感谢发布了新的文献求助10
6秒前
是我呀吼发布了新的文献求助20
6秒前
ayxa关注了科研通微信公众号
6秒前
量子星尘发布了新的文献求助10
7秒前
哈哈哈哈怪完成签到,获得积分10
7秒前
7秒前
宋天阳发布了新的文献求助10
7秒前
科研通AI5应助andy采纳,获得10
8秒前
8秒前
FashionBoy应助Pigeon采纳,获得10
9秒前
科研通AI5应助俊秀的钥匙采纳,获得10
9秒前
Monkey发布了新的文献求助10
9秒前
Jasper应助咕咕咕采纳,获得10
9秒前
萧匕发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068619
求助须知:如何正确求助?哪些是违规求助? 4290188
关于积分的说明 13366569
捐赠科研通 4109975
什么是DOI,文献DOI怎么找? 2250576
邀请新用户注册赠送积分活动 1255901
关于科研通互助平台的介绍 1188438