已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Integrating Machine Learning for Enhanced Agricultural Productivity: A Focus on Bananas and Arecanut in the Context of India’s Economic Growth

背景(考古学) 生产力 农业 数学 光学(聚焦) 农业工程 经济 地理 工程类 生物 经济增长 生态学 物理 光学 考古
作者
B. S. Saruk,G. Mokesh Rayalu
出处
期刊:Journal of Statistical Theory and Applications [Atlantis Press]
标识
DOI:10.1007/s44199-024-00090-y
摘要

Abstract Agriculture is one of the sectors that has an important impact, taking into account the problem of sufficient food supply on a global level. The process of predicting the yield of crops is among the most challenging undertakings in the agricultural industry. Agriculture is the main source of income for most developing nations. The purpose of the study is to investigate the significant role that agriculture plays in boosting India's economic growth. Additionally, the research considers the challenges posed by a growing population and a changing environment in terms of agricultural production and food security. The research focuses on analysing the complex characteristics of the agricultural industry, with a particular emphasis on the nutritional importance of tropical fruits, notably bananas and arecanut. These fruits are well-known for their vital nutrients and their role in ensuring world food security. This study acknowledges the importance of sustainable agriculture practices and incorporates sophisticated machine learning algorithms as dynamic tools to forecast crop yields and enhance decision-making processes throughout the crop development cycle. The main aim of this study is to create strong machine learning models and statistical techniques that can accurately predict crop yield by combining a variety of environmental parameters, then assess which models outperform each other. Assist yield projections may provide governments and policymakers with valuable information to make well-informed choices about food security, import–export policies, and resource allocation. It facilitates national- and regional-level food supply planning. The validation method utilises important metrics like R square (R 2 ), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). This present research adds to the continuing discussion on using creative methods to promote sustainable agricultural growth and ensure food security.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘎嘎嘎嘎发布了新的文献求助10
1秒前
3秒前
HHealer完成签到,获得积分10
4秒前
yoshlpzxr完成签到,获得积分20
5秒前
bygone完成签到,获得积分0
7秒前
8秒前
li完成签到,获得积分20
8秒前
bygone发布了新的文献求助10
11秒前
烟花应助真是麻烦采纳,获得10
11秒前
浑语堂应助kxkx采纳,获得20
11秒前
科研达人完成签到,获得积分20
11秒前
小宋应助wxyllxx采纳,获得10
12秒前
shi hui应助wxyllxx采纳,获得10
12秒前
12秒前
shi hui应助wxyllxx采纳,获得10
12秒前
shi hui应助wxyllxx采纳,获得10
12秒前
shi hui应助wxyllxx采纳,获得10
12秒前
shi hui应助wxyllxx采纳,获得10
12秒前
shi hui应助wxyllxx采纳,获得10
12秒前
科研通AI2S应助wxyllxx采纳,获得30
12秒前
14秒前
大家好完成签到 ,获得积分10
15秒前
舒服的摇伽完成签到 ,获得积分10
15秒前
E1dent发布了新的文献求助10
16秒前
无辜的采枫完成签到,获得积分10
16秒前
guo完成签到 ,获得积分10
16秒前
诗轩发布了新的文献求助10
17秒前
17秒前
SneaPea发布了新的文献求助10
19秒前
科研达人发布了新的文献求助10
20秒前
秋蚓完成签到 ,获得积分10
21秒前
活泼雁芙发布了新的文献求助10
22秒前
天天快乐应助orange采纳,获得10
24秒前
科目三应助万海采纳,获得10
30秒前
123木头人完成签到,获得积分10
30秒前
烟花应助真是麻烦采纳,获得10
31秒前
科研通AI5应助诗轩采纳,获得10
31秒前
ran完成签到 ,获得积分10
33秒前
能干发夹发布了新的文献求助10
34秒前
吃花生不吃花生米完成签到,获得积分10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3566455
求助须知:如何正确求助?哪些是违规求助? 3139157
关于积分的说明 9430760
捐赠科研通 2840013
什么是DOI,文献DOI怎么找? 1560936
邀请新用户注册赠送积分活动 730090
科研通“疑难数据库(出版商)”最低求助积分说明 717778