Efficient Optimized YOLOv8 Model with Extended Vision

计算机科学 人工智能 计算机视觉 机器视觉 计算机图形学(图像)
作者
Zhou bao qi,Zhou Wang,Yiwen Zhong,Fenglin Zhong,Lijin Wang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (20): 6506-6506
标识
DOI:10.3390/s24206506
摘要

In the field of object detection, enhancing algorithm performance in complex scenarios represents a fundamental technological challenge. To address this issue, this paper presents an efficient optimized YOLOv8 model with extended vision (YOLO-EV), which optimizes the performance of the YOLOv8 model through a series of innovative improvement measures and strategies. First, we propose a multi-branch group-enhanced fusion attention (MGEFA) module and integrate it into YOLO-EV, which significantly boosts the model's feature extraction capabilities. Second, we enhance the existing spatial pyramid pooling fast (SPPF) layer by integrating large scale kernel attention (LSKA), improving the model's efficiency in processing spatial information. Additionally, we replace the traditional IOU loss function with the Wise-IOU loss function, thereby enhancing localization accuracy across various target sizes. We also introduce a P6 layer to augment the model's detection capabilities for multi-scale targets. Through network structure optimization, we achieve higher computational efficiency, ensuring that YOLO-EV consumes fewer computational resources than YOLOv8s. In the validation section, preliminary tests on the VOC12 dataset demonstrate YOLO-EV's effectiveness in standard object detection tasks. Moreover, YOLO-EV has been applied to the CottonWeedDet12 and CropWeed datasets, which are characterized by complex scenes, diverse weed morphologies, significant occlusions, and numerous small targets. Experimental results indicate that YOLO-EV exhibits superior detection accuracy in these complex agricultural environments compared to the original YOLOv8s and other state-of-the-art models, effectively identifying and locating various types of weeds, thus demonstrating its significant practical application potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bake完成签到 ,获得积分10
2秒前
3秒前
yuan完成签到,获得积分10
3秒前
论文多多完成签到,获得积分10
4秒前
4秒前
Acid完成签到 ,获得积分10
4秒前
1111111111111发布了新的文献求助10
5秒前
linlinyilulvdeng完成签到,获得积分10
5秒前
斯文败类应助历史雨采纳,获得10
6秒前
FashionBoy应助吃个大笼包采纳,获得10
8秒前
海阔天空发布了新的文献求助10
9秒前
薛建伟发布了新的文献求助10
10秒前
高高代珊发布了新的文献求助10
11秒前
害羞的墨镜完成签到,获得积分10
11秒前
lalala发布了新的文献求助10
11秒前
12秒前
guojingjing完成签到,获得积分10
12秒前
打打应助科多兽骑士采纳,获得10
13秒前
angela完成签到,获得积分10
13秒前
13秒前
潇洒的茗茗完成签到 ,获得积分10
15秒前
脂肪小米粥完成签到,获得积分10
16秒前
小幸运完成签到,获得积分10
19秒前
爱吃冻梨完成签到,获得积分10
19秒前
xiang发布了新的文献求助10
19秒前
陈冲冲完成签到,获得积分10
20秒前
changfox完成签到,获得积分10
20秒前
21秒前
21秒前
孙晓燕完成签到 ,获得积分10
21秒前
21秒前
望着拥有完成签到,获得积分10
21秒前
22秒前
xcx发布了新的文献求助10
24秒前
Jeri完成签到 ,获得积分10
25秒前
Harlotte完成签到 ,获得积分10
26秒前
26秒前
温柔翰发布了新的文献求助10
26秒前
26秒前
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066