Efficient Optimized YOLOv8 Model with Extended Vision

计算机科学 人工智能 计算机视觉 机器视觉 计算机图形学(图像)
作者
Zhou bao qi,Zhou Wang,Yiwen Zhong,Fenglin Zhong,Lijin Wang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (20): 6506-6506
标识
DOI:10.3390/s24206506
摘要

In the field of object detection, enhancing algorithm performance in complex scenarios represents a fundamental technological challenge. To address this issue, this paper presents an efficient optimized YOLOv8 model with extended vision (YOLO-EV), which optimizes the performance of the YOLOv8 model through a series of innovative improvement measures and strategies. First, we propose a multi-branch group-enhanced fusion attention (MGEFA) module and integrate it into YOLO-EV, which significantly boosts the model's feature extraction capabilities. Second, we enhance the existing spatial pyramid pooling fast (SPPF) layer by integrating large scale kernel attention (LSKA), improving the model's efficiency in processing spatial information. Additionally, we replace the traditional IOU loss function with the Wise-IOU loss function, thereby enhancing localization accuracy across various target sizes. We also introduce a P6 layer to augment the model's detection capabilities for multi-scale targets. Through network structure optimization, we achieve higher computational efficiency, ensuring that YOLO-EV consumes fewer computational resources than YOLOv8s. In the validation section, preliminary tests on the VOC12 dataset demonstrate YOLO-EV's effectiveness in standard object detection tasks. Moreover, YOLO-EV has been applied to the CottonWeedDet12 and CropWeed datasets, which are characterized by complex scenes, diverse weed morphologies, significant occlusions, and numerous small targets. Experimental results indicate that YOLO-EV exhibits superior detection accuracy in these complex agricultural environments compared to the original YOLOv8s and other state-of-the-art models, effectively identifying and locating various types of weeds, thus demonstrating its significant practical application potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月亮发布了新的文献求助10
1秒前
毛毛弟发布了新的文献求助10
2秒前
2秒前
我是老大应助扎心采纳,获得10
3秒前
3秒前
3秒前
00发布了新的文献求助10
4秒前
勤劳平彤发布了新的文献求助10
4秒前
qq完成签到,获得积分10
5秒前
5秒前
今后应助wxq采纳,获得10
6秒前
ding应助hyekyo采纳,获得10
6秒前
儒雅大象发布了新的文献求助10
7秒前
HY完成签到,获得积分10
8秒前
1325850238完成签到 ,获得积分10
8秒前
wjx发布了新的文献求助10
8秒前
8秒前
Deny完成签到,获得积分10
9秒前
酷波er应助jgqysu采纳,获得10
9秒前
9秒前
活蹦乱跳二愣子完成签到,获得积分10
10秒前
乐乐应助Joan采纳,获得10
10秒前
sherlock完成签到,获得积分10
11秒前
12秒前
不安青牛应助屈春洋采纳,获得10
12秒前
CodeCraft应助hu采纳,获得10
12秒前
坚定的寒松完成签到,获得积分10
12秒前
五月莲花完成签到,获得积分10
13秒前
不安青牛应助摇摇奶昔采纳,获得20
13秒前
13秒前
知食分子发布了新的文献求助20
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
小二郎应助月下听花采纳,获得10
14秒前
儒雅大象完成签到,获得积分10
14秒前
浮游应助娜娜采纳,获得10
14秒前
my发布了新的文献求助10
15秒前
Twistzz完成签到,获得积分10
15秒前
细心的雨竹完成签到,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097113
求助须知:如何正确求助?哪些是违规求助? 4309682
关于积分的说明 13427832
捐赠科研通 4137094
什么是DOI,文献DOI怎么找? 2266469
邀请新用户注册赠送积分活动 1269541
关于科研通互助平台的介绍 1205874