Efficient Optimized YOLOv8 Model with Extended Vision

计算机科学 人工智能 计算机视觉 机器视觉 计算机图形学(图像)
作者
Zhou bao qi,Zhou Wang,Yiwen Zhong,Fenglin Zhong,Lijin Wang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (20): 6506-6506
标识
DOI:10.3390/s24206506
摘要

In the field of object detection, enhancing algorithm performance in complex scenarios represents a fundamental technological challenge. To address this issue, this paper presents an efficient optimized YOLOv8 model with extended vision (YOLO-EV), which optimizes the performance of the YOLOv8 model through a series of innovative improvement measures and strategies. First, we propose a multi-branch group-enhanced fusion attention (MGEFA) module and integrate it into YOLO-EV, which significantly boosts the model's feature extraction capabilities. Second, we enhance the existing spatial pyramid pooling fast (SPPF) layer by integrating large scale kernel attention (LSKA), improving the model's efficiency in processing spatial information. Additionally, we replace the traditional IOU loss function with the Wise-IOU loss function, thereby enhancing localization accuracy across various target sizes. We also introduce a P6 layer to augment the model's detection capabilities for multi-scale targets. Through network structure optimization, we achieve higher computational efficiency, ensuring that YOLO-EV consumes fewer computational resources than YOLOv8s. In the validation section, preliminary tests on the VOC12 dataset demonstrate YOLO-EV's effectiveness in standard object detection tasks. Moreover, YOLO-EV has been applied to the CottonWeedDet12 and CropWeed datasets, which are characterized by complex scenes, diverse weed morphologies, significant occlusions, and numerous small targets. Experimental results indicate that YOLO-EV exhibits superior detection accuracy in these complex agricultural environments compared to the original YOLOv8s and other state-of-the-art models, effectively identifying and locating various types of weeds, thus demonstrating its significant practical application potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Andy1201应助Hatexist采纳,获得50
刚刚
Jasmine发布了新的文献求助10
刚刚
1秒前
彳亍发布了新的文献求助10
1秒前
彭于晏应助gwff采纳,获得10
1秒前
1秒前
曼凡发布了新的文献求助10
2秒前
3秒前
3秒前
zzzzzzz完成签到,获得积分10
3秒前
大模型应助wangchaofk采纳,获得10
4秒前
禾风发布了新的文献求助10
4秒前
wang123发布了新的文献求助20
4秒前
好奇宝宝发布了新的文献求助10
5秒前
5秒前
元谷雪发布了新的文献求助10
5秒前
陌疑应助白鸽鸽采纳,获得10
6秒前
陶醉元冬完成签到,获得积分10
7秒前
7秒前
NJP发布了新的文献求助10
7秒前
111发布了新的文献求助10
8秒前
淡淡雨琴发布了新的文献求助10
8秒前
8秒前
史彦钊完成签到,获得积分10
9秒前
吴大打发布了新的文献求助10
9秒前
美梦成真完成签到,获得积分10
9秒前
欢喜芒果完成签到,获得积分10
10秒前
10秒前
allen完成签到,获得积分10
11秒前
11秒前
marstar发布了新的文献求助30
11秒前
ssss完成签到,获得积分10
12秒前
12秒前
iNk应助艾妮吗采纳,获得10
12秒前
豆子发布了新的文献求助10
14秒前
司空雨筠完成签到,获得积分10
14秒前
搜集达人应助熊熊熊采纳,获得10
14秒前
14秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971277
求助须知:如何正确求助?哪些是违规求助? 3515939
关于积分的说明 11180280
捐赠科研通 3251061
什么是DOI,文献DOI怎么找? 1795664
邀请新用户注册赠送积分活动 875937
科研通“疑难数据库(出版商)”最低求助积分说明 805209