Efficient Optimized YOLOv8 Model with Extended Vision

计算机科学 人工智能 计算机视觉 机器视觉 计算机图形学(图像)
作者
Zhou bao qi,Zhou Wang,Yiwen Zhong,Fenglin Zhong,Lijin Wang
出处
期刊:Sensors [MDPI AG]
卷期号:24 (20): 6506-6506
标识
DOI:10.3390/s24206506
摘要

In the field of object detection, enhancing algorithm performance in complex scenarios represents a fundamental technological challenge. To address this issue, this paper presents an efficient optimized YOLOv8 model with extended vision (YOLO-EV), which optimizes the performance of the YOLOv8 model through a series of innovative improvement measures and strategies. First, we propose a multi-branch group-enhanced fusion attention (MGEFA) module and integrate it into YOLO-EV, which significantly boosts the model's feature extraction capabilities. Second, we enhance the existing spatial pyramid pooling fast (SPPF) layer by integrating large scale kernel attention (LSKA), improving the model's efficiency in processing spatial information. Additionally, we replace the traditional IOU loss function with the Wise-IOU loss function, thereby enhancing localization accuracy across various target sizes. We also introduce a P6 layer to augment the model's detection capabilities for multi-scale targets. Through network structure optimization, we achieve higher computational efficiency, ensuring that YOLO-EV consumes fewer computational resources than YOLOv8s. In the validation section, preliminary tests on the VOC12 dataset demonstrate YOLO-EV's effectiveness in standard object detection tasks. Moreover, YOLO-EV has been applied to the CottonWeedDet12 and CropWeed datasets, which are characterized by complex scenes, diverse weed morphologies, significant occlusions, and numerous small targets. Experimental results indicate that YOLO-EV exhibits superior detection accuracy in these complex agricultural environments compared to the original YOLOv8s and other state-of-the-art models, effectively identifying and locating various types of weeds, thus demonstrating its significant practical application potential.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gaoww完成签到,获得积分10
刚刚
哈牛柚子鹿完成签到,获得积分10
刚刚
章鱼小丸子完成签到,获得积分10
刚刚
那小子真帅完成签到,获得积分10
1秒前
1秒前
方hh完成签到,获得积分10
1秒前
SaSa完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
zhuling发布了新的文献求助10
1秒前
派大星发布了新的文献求助10
1秒前
深年完成签到,获得积分10
1秒前
huangbing123完成签到 ,获得积分10
1秒前
liuye0202完成签到,获得积分10
2秒前
稳重的冰薇完成签到,获得积分10
2秒前
3秒前
顺利的冰海完成签到,获得积分10
3秒前
干净冰露完成签到,获得积分20
3秒前
洪汉完成签到,获得积分10
4秒前
天天快乐应助AL采纳,获得10
4秒前
milly完成签到,获得积分10
4秒前
搞科研的静静完成签到,获得积分10
4秒前
文轩完成签到,获得积分10
4秒前
星辰大海应助无辜的薯片采纳,获得10
4秒前
小孙完成签到,获得积分20
4秒前
KL发布了新的文献求助10
4秒前
迷人宛完成签到,获得积分10
4秒前
ZCM完成签到,获得积分10
4秒前
AI imaging完成签到,获得积分10
5秒前
彭于晏应助九月鹰飞采纳,获得10
6秒前
大胆的弼完成签到,获得积分10
6秒前
123完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
daifei完成签到,获得积分10
6秒前
斯文败类应助yan采纳,获得10
6秒前
7秒前
wheat完成签到,获得积分10
7秒前
人不可貌相完成签到,获得积分20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977