膜蒸馏
润湿
结垢
膜
膜污染
杰纳斯
接触角
材料科学
蒸馏
表面能
化学工程
化学
色谱法
纳米技术
海水淡化
复合材料
工程类
生物化学
作者
Lijun Meng,Xingfeng Chen,Teng Cai,Xin Tong,Zhiwei Wang
标识
DOI:10.1016/j.watres.2024.122176
摘要
Membrane distillation (MD) presents a promising alternative to conventional desalination systems, particularly for the treatment of hypersaline wastewater. However, the large-scale application of MD is hindered by challenges such as membrane wetting, membrane fouling, and low permeate flux. Herein, we proposed an air/liquid interface deposition method to fabricate a Janus membrane, termed the PVDF-PDA/PEI-Si membrane. The membrane featured a nanosieving, superhydrophilic polydopamine/polyethylenimine (PDA/PEI) layer decorated with silica nanoparticles, coupled with a microporous, hydrophobic polyvinylidene fluoride (PVDF) layer. The introduction of a dense PDA/PEI-Si layer featuring high surface energy significantly enhanced the wetting and fouling resistance of the membrane, with a minor effect on the permeate flux. The performance enhancement was particularly evident when hypersaline water containing sodium dodecyl sulfate (SDS) and oily contaminants was used as the feed. The interactions between the membrane and contaminants were calculated using the XDLVO theory and molecular dynamics simulations to elucidate the mechanisms underlying the enhanced anti-wetting and anti-fouling properties, respectively. According to the XDLVO theory, a large energy barrier must be overcome for the SDS to attach onto the PDA/PEI-Si surface. Meanwhile, molecular dynamics simulations confirmed the weak interaction energy between the oily foulants and the PVDF-PDA/PEI-Si membrane due to its high surface energy. This study presents a promising approach for the fabrication of high-performance MD membranes and provides new insights into the mechanisms underlying the enhanced anti-wetting and anti-fouling properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI