Detection and risk stratification of cardiac amyloidosis patients by integration of imaging and non-imaging data using a machine learning approach

医学 危险分层 心脏淀粉样变性 淀粉样变性 人工智能 医学物理学 放射科 内科学 计算机科学
作者
CP Spielvogel,David Haberl,Kilian Kluge,Katharina Mascherbauer,J Hennenberg,Jinpu Yu,Jing Ning,Tatjana Traub‐Weidinger,Raffaella Calabretta,Julia Mascherbauer,Andreas A. Kammerlander,Christian Hengstenberg,Marcus Hacker,Christian Nitsche
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.3459
摘要

Abstract Background With the advent of amyloid-targeting therapies, early and reliable diagnosis as well as precise risk estimation of cardiac amyloidosis (CA) have become of substantial importance. While the current diagnostic approach relies on difficult-to-standardize, visual interpretation of 99mTc-scintigraphy, risk assessment is largely based on a combination of blood and imaging parameters. Purpose Aim of this study is to assess the possibility of machine learning-based integration of scintigraphy, echocardiography, and non-imaging parameters such as blood parameters and comorbidities for the detection and risk stratification of patients with CA. Methods This study included all patients who underwent 99mTc-scintigraphy at a university affiliated tertiary care centre between 2010 and 2023. Two machine learning models were developed, and the relative predictive importance of their parameters were assessed (Figure 1): First, a model to detect patients with CA-suggestive uptake (Perugini grade 2/3) on 99mTc-scintigraphy scans; Second, a model to assess the risk of patients with CA-suggestive uptake for future heart failure hospitalization (HFH). A total of 58 features were extracted from electronic health records including blood, echocardiographic, demographic parameters and comorbidities. Scintigraphy imaging features were extracted from the raw imaging data using a deep learning approach. For the time to HFH prediction, a random survival forest machine learning model was employed. Results Overall, 12 380 consecutively enrolled patients were included, 279 (2.3%) of which were affected by CA-suggestive uptake. The machine learning model showed higher accuracy for the detection of CA (AUC 0.96 [95% CI 0.95-0.97], sensitivity 0.78 [95% CI 0.77-0.80] and specificity 0.99 [95% CI 0.99-0.99]. In the outcome analysis, the machine model showed good accuracy in predicting future HFH (C-index 0.71 [95% CI 0.68-0.75]). Parameter importance for the time to event analysis revealed right ventricular diameter, previous diagnosis of chronic heart failure and creatine kinase as the three most important predictors (Figure 2). Conclusions Detection of patients with cardiac amyloidosis and their risk estimation for heart failure can be aided using machine learning-based integration of imaging and non-imaging data. Our findings may guide novel approaches for assessing disease progression and treatment response.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
will发布了新的文献求助10
1秒前
ssnha完成签到 ,获得积分10
1秒前
1秒前
2秒前
所所应助123采纳,获得10
2秒前
义气白开水完成签到,获得积分10
2秒前
2秒前
2秒前
桐桐应助Huang采纳,获得10
2秒前
Gdhdjxbbx发布了新的文献求助10
2秒前
3秒前
4秒前
ket完成签到,获得积分10
4秒前
ao发布了新的文献求助10
4秒前
独特南霜发布了新的文献求助10
5秒前
不厌发布了新的文献求助10
5秒前
6秒前
芸沐发布了新的文献求助10
6秒前
小马甲应助称心的妖妖采纳,获得10
6秒前
李健的粉丝团团长应助bey采纳,获得10
7秒前
善学以致用应助mogic采纳,获得30
7秒前
不安若颜发布了新的文献求助10
9秒前
心灵美的大山完成签到,获得积分10
9秒前
请你加倍努力完成签到,获得积分10
10秒前
天天快乐应助Yvonne采纳,获得10
10秒前
11秒前
吕小软完成签到,获得积分10
11秒前
土豪的荟完成签到,获得积分10
11秒前
炸虾仁发布了新的文献求助10
12秒前
华仔应助caixiayin采纳,获得10
13秒前
大模型应助taki采纳,获得10
13秒前
星辰大海应助rengar采纳,获得10
13秒前
ZZZZZ完成签到,获得积分10
13秒前
青寻完成签到,获得积分10
14秒前
不安豁完成签到,获得积分10
14秒前
搞笑5次完成签到,获得积分10
15秒前
罗小琴发布了新的文献求助10
16秒前
不安若颜完成签到,获得积分10
18秒前
PikaQ应助科研小白采纳,获得10
18秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650