已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detection and risk stratification of cardiac amyloidosis patients by integration of imaging and non-imaging data using a machine learning approach

医学 危险分层 心脏淀粉样变性 淀粉样变性 人工智能 医学物理学 放射科 内科学 计算机科学
作者
CP Spielvogel,David Haberl,Kilian Kluge,Katharina Mascherbauer,J Hennenberg,Jinpu Yu,Jing Ning,Tatjana Traub‐Weidinger,Raffaella Calabretta,Julia Mascherbauer,Andreas A. Kammerlander,Christian Hengstenberg,Marcus Hacker,Christian Nitsche
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.3459
摘要

Abstract Background With the advent of amyloid-targeting therapies, early and reliable diagnosis as well as precise risk estimation of cardiac amyloidosis (CA) have become of substantial importance. While the current diagnostic approach relies on difficult-to-standardize, visual interpretation of 99mTc-scintigraphy, risk assessment is largely based on a combination of blood and imaging parameters. Purpose Aim of this study is to assess the possibility of machine learning-based integration of scintigraphy, echocardiography, and non-imaging parameters such as blood parameters and comorbidities for the detection and risk stratification of patients with CA. Methods This study included all patients who underwent 99mTc-scintigraphy at a university affiliated tertiary care centre between 2010 and 2023. Two machine learning models were developed, and the relative predictive importance of their parameters were assessed (Figure 1): First, a model to detect patients with CA-suggestive uptake (Perugini grade 2/3) on 99mTc-scintigraphy scans; Second, a model to assess the risk of patients with CA-suggestive uptake for future heart failure hospitalization (HFH). A total of 58 features were extracted from electronic health records including blood, echocardiographic, demographic parameters and comorbidities. Scintigraphy imaging features were extracted from the raw imaging data using a deep learning approach. For the time to HFH prediction, a random survival forest machine learning model was employed. Results Overall, 12 380 consecutively enrolled patients were included, 279 (2.3%) of which were affected by CA-suggestive uptake. The machine learning model showed higher accuracy for the detection of CA (AUC 0.96 [95% CI 0.95-0.97], sensitivity 0.78 [95% CI 0.77-0.80] and specificity 0.99 [95% CI 0.99-0.99]. In the outcome analysis, the machine model showed good accuracy in predicting future HFH (C-index 0.71 [95% CI 0.68-0.75]). Parameter importance for the time to event analysis revealed right ventricular diameter, previous diagnosis of chronic heart failure and creatine kinase as the three most important predictors (Figure 2). Conclusions Detection of patients with cardiac amyloidosis and their risk estimation for heart failure can be aided using machine learning-based integration of imaging and non-imaging data. Our findings may guide novel approaches for assessing disease progression and treatment response.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助实物图采纳,获得10
1秒前
晨晨完成签到 ,获得积分10
1秒前
Carole完成签到 ,获得积分10
2秒前
Akim应助雅士白农学家采纳,获得10
2秒前
韦鑫龙完成签到,获得积分10
2秒前
2秒前
半斤完成签到 ,获得积分10
3秒前
5秒前
nav完成签到 ,获得积分10
5秒前
Tohka完成签到 ,获得积分10
5秒前
RRR232完成签到 ,获得积分10
5秒前
6秒前
大方听白完成签到 ,获得积分10
6秒前
123完成签到 ,获得积分10
8秒前
聪聪great发布了新的文献求助10
9秒前
01259完成签到 ,获得积分10
10秒前
嘁嘁嘁发布了新的文献求助10
10秒前
11秒前
azon完成签到 ,获得积分10
12秒前
韦老虎完成签到,获得积分20
13秒前
聪聪great完成签到,获得积分20
13秒前
14秒前
徐zhipei完成签到 ,获得积分10
14秒前
15秒前
15秒前
15秒前
15秒前
Criminology34应助HH采纳,获得10
16秒前
神奇五子棋完成签到 ,获得积分10
16秒前
16秒前
敏感的博超完成签到 ,获得积分10
17秒前
Owen应助清秀小霸王采纳,获得10
17秒前
Left发布了新的文献求助10
17秒前
聪明萤完成签到 ,获得积分10
18秒前
实物图发布了新的文献求助10
18秒前
19秒前
comeongong发布了新的文献求助10
19秒前
Rainsky完成签到 ,获得积分10
19秒前
风中黎昕完成签到 ,获得积分10
20秒前
仙仙仙仙啊完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525082
关于积分的说明 14100857
捐赠科研通 4438819
什么是DOI,文献DOI怎么找? 2436491
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504