亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection and risk stratification of cardiac amyloidosis patients by integration of imaging and non-imaging data using a machine learning approach

医学 危险分层 心脏淀粉样变性 淀粉样变性 人工智能 医学物理学 放射科 内科学 计算机科学
作者
CP Spielvogel,David Haberl,Kilian Kluge,Katharina Mascherbauer,J Hennenberg,Jinpu Yu,Jing Ning,Tatjana Traub‐Weidinger,Raffaella Calabretta,Julia Mascherbauer,Andreas A. Kammerlander,Christian Hengstenberg,Marcus Hacker,Christian Nitsche
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.3459
摘要

Abstract Background With the advent of amyloid-targeting therapies, early and reliable diagnosis as well as precise risk estimation of cardiac amyloidosis (CA) have become of substantial importance. While the current diagnostic approach relies on difficult-to-standardize, visual interpretation of 99mTc-scintigraphy, risk assessment is largely based on a combination of blood and imaging parameters. Purpose Aim of this study is to assess the possibility of machine learning-based integration of scintigraphy, echocardiography, and non-imaging parameters such as blood parameters and comorbidities for the detection and risk stratification of patients with CA. Methods This study included all patients who underwent 99mTc-scintigraphy at a university affiliated tertiary care centre between 2010 and 2023. Two machine learning models were developed, and the relative predictive importance of their parameters were assessed (Figure 1): First, a model to detect patients with CA-suggestive uptake (Perugini grade 2/3) on 99mTc-scintigraphy scans; Second, a model to assess the risk of patients with CA-suggestive uptake for future heart failure hospitalization (HFH). A total of 58 features were extracted from electronic health records including blood, echocardiographic, demographic parameters and comorbidities. Scintigraphy imaging features were extracted from the raw imaging data using a deep learning approach. For the time to HFH prediction, a random survival forest machine learning model was employed. Results Overall, 12 380 consecutively enrolled patients were included, 279 (2.3%) of which were affected by CA-suggestive uptake. The machine learning model showed higher accuracy for the detection of CA (AUC 0.96 [95% CI 0.95-0.97], sensitivity 0.78 [95% CI 0.77-0.80] and specificity 0.99 [95% CI 0.99-0.99]. In the outcome analysis, the machine model showed good accuracy in predicting future HFH (C-index 0.71 [95% CI 0.68-0.75]). Parameter importance for the time to event analysis revealed right ventricular diameter, previous diagnosis of chronic heart failure and creatine kinase as the three most important predictors (Figure 2). Conclusions Detection of patients with cardiac amyloidosis and their risk estimation for heart failure can be aided using machine learning-based integration of imaging and non-imaging data. Our findings may guide novel approaches for assessing disease progression and treatment response.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
雷锋完成签到 ,获得积分10
11秒前
加菲丰丰应助科研通管家采纳,获得20
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
52秒前
SciGPT应助体贴花卷采纳,获得10
57秒前
joanna完成签到,获得积分10
1分钟前
1分钟前
单纯的小甜完成签到,获得积分10
1分钟前
1分钟前
语嘘嘘发布了新的文献求助50
1分钟前
34101127完成签到 ,获得积分10
2分钟前
儒雅HR完成签到 ,获得积分10
2分钟前
儒雅HR关注了科研通微信公众号
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
天天天才完成签到,获得积分10
2分钟前
lalaheilala完成签到 ,获得积分10
2分钟前
daishuheng完成签到 ,获得积分10
3分钟前
领导范儿应助儒雅HR采纳,获得10
4分钟前
小蘑菇应助蓝色的多崎作采纳,获得10
4分钟前
4分钟前
4分钟前
勤恳惮完成签到,获得积分10
4分钟前
善学以致用应助揍鱼采纳,获得10
4分钟前
JamesPei应助青葱年华rr采纳,获得30
4分钟前
sun完成签到,获得积分20
4分钟前
Ava应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
揍鱼发布了新的文献求助10
4分钟前
852应助达达利亚采纳,获得10
5分钟前
5分钟前
揍鱼完成签到,获得积分10
5分钟前
5分钟前
5分钟前
超级mxl发布了新的文献求助10
5分钟前
共享精神应助超级mxl采纳,获得10
5分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314391
求助须知:如何正确求助?哪些是违规求助? 2946633
关于积分的说明 8531143
捐赠科研通 2622373
什么是DOI,文献DOI怎么找? 1434483
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650881