Data-driven neuroanatomical subtypes of primary progressive aphasia

原发性进行性失语 失语症 神经科学 心理学 医学 听力学 病理 疾病 痴呆 失智症
作者
Beatrice Taylor,Martina Bocchetta,Cameron Shand,Emily Todd,Anthipa Chokesuwattanaskul,Sebastian J. Crutch,Jason D. Warren,Jonathan D. Rohrer,Chris JD Hardy,Neil P. Oxtoby
出处
期刊:Brain [Oxford University Press]
被引量:1
标识
DOI:10.1093/brain/awae314
摘要

The primary progressive aphasias are rare, language-led dementias, with three main variants: semantic, non-fluent/agrammatic, and logopenic. Whilst semantic variant has a clear neuroanatomical profile, the non-fluent/agrammatic and logopenic variants are difficult to discriminate from neuroimaging. Previous phenotype-driven studies have characterised neuroanatomical profiles of each variant on MRI. In this work we used a machine learning algorithm known as SuStaIn to discover data-driven neuroanatomical "subtype" progression profiles and performed an in-depth subtype-phenotype analysis to characterise the heterogeneity of primary progressive aphasia. Our study included 270 participants with primary progressive aphasia seen for research in the UCL Queen Square Institute of Neurology Dementia Research Centre, with follow-up scans available for 137 participants. This dataset included individuals diagnosed with all three main variants (semantic: n=94, non-fluent/agrammatic: n=109, logopenic: n=51) as well as individuals with un-specified primary progressive aphasia (n=16). A data set of 66 patients (semantic n=37, non-fluent/agrammatic: n=29) from the ALLFTD North American cohort study, was used to validate our results. MRI scans were segmented and SuStaIn was employed on 19 regions of interest to identify neuroanatomical profiles independent of the diagnosis. We assessed the assignment of subtypes and stages, as well as their longitudinal consistency. We discovered four neuroanatomical subtypes of primary progressive aphasia, labelled S1 (left temporal), S2 (insula), S3 (temporoparietal), S4 (frontoparietal), exhibiting robustness to statistical scrutiny. S1 correlated strongly with semantic variant, while S2, S3, and S4 showed mixed associations with the logopenic and non-fluent/agrammatic variants. Notably, S3 displayed a neuroanatomical signature akin to a logopenic only signature, yet a significant proportion of logopenic cases were allocated to S2. The non-fluent/agrammatic variant demonstrated diverse associations with S2, S3, and S4. No clear relationship emerged between any of the neuroanatomical subtypes and the unspecified cases. At first follow up 84% of patients' subtype assignment was stable, and 91.9% of patients' stage assignment was stable. We partially validated our findings in the ALLFTD dataset, finding comparable qualitative patterns. Our study, leveraging machine learning on a large primary progressive aphasia dataset, delineated four distinct neuroanatomical patterns. Our findings suggest that separable spatio-temporal neuroanatomical phenotypes do exist within the PPA spectrum, but that these are noisy, particularly for nfvPPA and lvPPA. Furthermore, these phenotypes do not always conform to standard formulations of clinico-anatomical correlation. Understanding the multifaceted profiles of the disease, encompassing neuroanatomical, molecular, clinical, and cognitive dimensions, holds potential implications for clinical decision support.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助wayne采纳,获得10
刚刚
青葙完成签到,获得积分10
1秒前
一颗蓝莓完成签到 ,获得积分10
1秒前
阳光的凌雪完成签到 ,获得积分10
1秒前
fanyuhong完成签到 ,获得积分10
2秒前
辛勤夜柳发布了新的文献求助10
4秒前
4秒前
memedaaaah完成签到,获得积分10
5秒前
大河细流完成签到,获得积分10
6秒前
传奇3应助tian采纳,获得30
6秒前
还活着发布了新的文献求助10
7秒前
zzzzz完成签到,获得积分10
7秒前
10秒前
12秒前
爱听歌的丹琴完成签到,获得积分10
12秒前
15秒前
喜悦的依琴完成签到,获得积分10
16秒前
枫枫829完成签到,获得积分10
16秒前
泽2011发布了新的文献求助30
17秒前
iu完成签到,获得积分10
19秒前
希望天下0贩的0应助aaa采纳,获得10
20秒前
水镜完成签到,获得积分10
20秒前
tian发布了新的文献求助30
21秒前
21秒前
21秒前
天天快乐应助敬鱼采纳,获得10
24秒前
NexusExplorer应助枫枫829采纳,获得10
25秒前
25秒前
26秒前
26秒前
Metbutterly完成签到,获得积分10
27秒前
NUS完成签到,获得积分10
27秒前
27秒前
开花完成签到,获得积分10
27秒前
hymmm完成签到,获得积分10
28秒前
28秒前
会盟完成签到 ,获得积分10
29秒前
0231完成签到,获得积分10
29秒前
Metbutterly发布了新的文献求助10
29秒前
cx2683693878发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603867
求助须知:如何正确求助?哪些是违规求助? 4688768
关于积分的说明 14855984
捐赠科研通 4695232
什么是DOI,文献DOI怎么找? 2541009
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814