Data-driven neuroanatomical subtypes of primary progressive aphasia

原发性进行性失语 失语症 神经科学 心理学 医学 听力学 病理 疾病 痴呆 失智症
作者
Beatrice Taylor,Martina Bocchetta,Cameron Shand,Emily Todd,Anthipa Chokesuwattanaskul,Sebastian J. Crutch,Jason D. Warren,Jonathan D. Rohrer,Chris JD Hardy,Neil P. Oxtoby
出处
期刊:Brain [Oxford University Press]
被引量:1
标识
DOI:10.1093/brain/awae314
摘要

The primary progressive aphasias are rare, language-led dementias, with three main variants: semantic, non-fluent/agrammatic, and logopenic. Whilst semantic variant has a clear neuroanatomical profile, the non-fluent/agrammatic and logopenic variants are difficult to discriminate from neuroimaging. Previous phenotype-driven studies have characterised neuroanatomical profiles of each variant on MRI. In this work we used a machine learning algorithm known as SuStaIn to discover data-driven neuroanatomical "subtype" progression profiles and performed an in-depth subtype-phenotype analysis to characterise the heterogeneity of primary progressive aphasia. Our study included 270 participants with primary progressive aphasia seen for research in the UCL Queen Square Institute of Neurology Dementia Research Centre, with follow-up scans available for 137 participants. This dataset included individuals diagnosed with all three main variants (semantic: n=94, non-fluent/agrammatic: n=109, logopenic: n=51) as well as individuals with un-specified primary progressive aphasia (n=16). A data set of 66 patients (semantic n=37, non-fluent/agrammatic: n=29) from the ALLFTD North American cohort study, was used to validate our results. MRI scans were segmented and SuStaIn was employed on 19 regions of interest to identify neuroanatomical profiles independent of the diagnosis. We assessed the assignment of subtypes and stages, as well as their longitudinal consistency. We discovered four neuroanatomical subtypes of primary progressive aphasia, labelled S1 (left temporal), S2 (insula), S3 (temporoparietal), S4 (frontoparietal), exhibiting robustness to statistical scrutiny. S1 correlated strongly with semantic variant, while S2, S3, and S4 showed mixed associations with the logopenic and non-fluent/agrammatic variants. Notably, S3 displayed a neuroanatomical signature akin to a logopenic only signature, yet a significant proportion of logopenic cases were allocated to S2. The non-fluent/agrammatic variant demonstrated diverse associations with S2, S3, and S4. No clear relationship emerged between any of the neuroanatomical subtypes and the unspecified cases. At first follow up 84% of patients' subtype assignment was stable, and 91.9% of patients' stage assignment was stable. We partially validated our findings in the ALLFTD dataset, finding comparable qualitative patterns. Our study, leveraging machine learning on a large primary progressive aphasia dataset, delineated four distinct neuroanatomical patterns. Our findings suggest that separable spatio-temporal neuroanatomical phenotypes do exist within the PPA spectrum, but that these are noisy, particularly for nfvPPA and lvPPA. Furthermore, these phenotypes do not always conform to standard formulations of clinico-anatomical correlation. Understanding the multifaceted profiles of the disease, encompassing neuroanatomical, molecular, clinical, and cognitive dimensions, holds potential implications for clinical decision support.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
收费完成签到 ,获得积分10
刚刚
BIUBBBBB发布了新的文献求助10
刚刚
笑而不语完成签到 ,获得积分10
刚刚
刚刚
Hello应助瑶瑶啊采纳,获得10
刚刚
花落时相遇关注了科研通微信公众号
1秒前
123456发布了新的文献求助10
1秒前
1秒前
2秒前
lin yan完成签到 ,获得积分10
3秒前
科研通AI6应助kei采纳,获得10
3秒前
大猩猩发布了新的文献求助10
4秒前
赘婿应助美好斓采纳,获得10
4秒前
轻念发布了新的文献求助10
4秒前
5秒前
王潇怡发布了新的文献求助10
5秒前
好了完成签到,获得积分10
5秒前
万能图书馆应助东东采纳,获得10
5秒前
LLX123完成签到 ,获得积分10
6秒前
7秒前
自由自在发布了新的文献求助10
9秒前
迪歪歪应助大胆盼烟采纳,获得10
10秒前
马晓玲发布了新的文献求助10
10秒前
fash发布了新的文献求助10
10秒前
深情安青应助Anoxia采纳,获得10
10秒前
天天快乐应助轻念采纳,获得10
11秒前
隐形曼青应助默listening采纳,获得10
12秒前
何1发布了新的文献求助10
12秒前
pan发布了新的文献求助10
13秒前
14秒前
14秒前
WZH完成签到,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
YJ发布了新的文献求助10
18秒前
19秒前
迪歪歪应助asdf采纳,获得10
20秒前
李健的小迷弟应助文赟慧采纳,获得10
20秒前
璐鹿娜完成签到,获得积分10
20秒前
20秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615218
求助须知:如何正确求助?哪些是违规求助? 4700091
关于积分的说明 14906605
捐赠科研通 4741474
什么是DOI,文献DOI怎么找? 2547964
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473781