Data-driven neuroanatomical subtypes of primary progressive aphasia

原发性进行性失语 失语症 神经科学 心理学 医学 听力学 病理 疾病 痴呆 失智症
作者
Beatrice Taylor,Martina Bocchetta,Cameron Shand,Emily Todd,Anthipa Chokesuwattanaskul,Sebastian J. Crutch,Jason D. Warren,Jonathan D. Rohrer,Chris JD Hardy,Neil P. Oxtoby
出处
期刊:Brain [Oxford University Press]
被引量:1
标识
DOI:10.1093/brain/awae314
摘要

The primary progressive aphasias are rare, language-led dementias, with three main variants: semantic, non-fluent/agrammatic, and logopenic. Whilst semantic variant has a clear neuroanatomical profile, the non-fluent/agrammatic and logopenic variants are difficult to discriminate from neuroimaging. Previous phenotype-driven studies have characterised neuroanatomical profiles of each variant on MRI. In this work we used a machine learning algorithm known as SuStaIn to discover data-driven neuroanatomical "subtype" progression profiles and performed an in-depth subtype-phenotype analysis to characterise the heterogeneity of primary progressive aphasia. Our study included 270 participants with primary progressive aphasia seen for research in the UCL Queen Square Institute of Neurology Dementia Research Centre, with follow-up scans available for 137 participants. This dataset included individuals diagnosed with all three main variants (semantic: n=94, non-fluent/agrammatic: n=109, logopenic: n=51) as well as individuals with un-specified primary progressive aphasia (n=16). A data set of 66 patients (semantic n=37, non-fluent/agrammatic: n=29) from the ALLFTD North American cohort study, was used to validate our results. MRI scans were segmented and SuStaIn was employed on 19 regions of interest to identify neuroanatomical profiles independent of the diagnosis. We assessed the assignment of subtypes and stages, as well as their longitudinal consistency. We discovered four neuroanatomical subtypes of primary progressive aphasia, labelled S1 (left temporal), S2 (insula), S3 (temporoparietal), S4 (frontoparietal), exhibiting robustness to statistical scrutiny. S1 correlated strongly with semantic variant, while S2, S3, and S4 showed mixed associations with the logopenic and non-fluent/agrammatic variants. Notably, S3 displayed a neuroanatomical signature akin to a logopenic only signature, yet a significant proportion of logopenic cases were allocated to S2. The non-fluent/agrammatic variant demonstrated diverse associations with S2, S3, and S4. No clear relationship emerged between any of the neuroanatomical subtypes and the unspecified cases. At first follow up 84% of patients' subtype assignment was stable, and 91.9% of patients' stage assignment was stable. We partially validated our findings in the ALLFTD dataset, finding comparable qualitative patterns. Our study, leveraging machine learning on a large primary progressive aphasia dataset, delineated four distinct neuroanatomical patterns. Our findings suggest that separable spatio-temporal neuroanatomical phenotypes do exist within the PPA spectrum, but that these are noisy, particularly for nfvPPA and lvPPA. Furthermore, these phenotypes do not always conform to standard formulations of clinico-anatomical correlation. Understanding the multifaceted profiles of the disease, encompassing neuroanatomical, molecular, clinical, and cognitive dimensions, holds potential implications for clinical decision support.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
慕青应助半_采纳,获得10
2秒前
小确幸发布了新的文献求助10
2秒前
哈哈完成签到 ,获得积分10
2秒前
ACoolZc完成签到,获得积分10
3秒前
crx完成签到 ,获得积分10
4秒前
chuanxue发布了新的文献求助10
4秒前
AuCu完成签到,获得积分20
5秒前
ACoolZc发布了新的文献求助10
5秒前
梦龙南舟发布了新的文献求助10
6秒前
6秒前
AuCu发布了新的文献求助10
7秒前
Lipei完成签到,获得积分10
8秒前
8秒前
Ava应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
华仔应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
F_echo应助科研通管家采纳,获得20
9秒前
9秒前
9秒前
yznfly应助切切采纳,获得20
9秒前
小确幸完成签到,获得积分10
10秒前
qi完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
稳重的香萱完成签到 ,获得积分10
12秒前
zhuxiaoer发布了新的文献求助10
13秒前
guo发布了新的文献求助10
13秒前
111完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606135
求助须知:如何正确求助?哪些是违规求助? 4690648
关于积分的说明 14864859
捐赠科研通 4704180
什么是DOI,文献DOI怎么找? 2542486
邀请新用户注册赠送积分活动 1508004
关于科研通互助平台的介绍 1472217