Data-driven neuroanatomical subtypes of primary progressive aphasia

原发性进行性失语 失语症 神经科学 心理学 医学 听力学 病理 疾病 痴呆 失智症
作者
Beatrice Taylor,Martina Bocchetta,Cameron Shand,Emily Todd,Anthipa Chokesuwattanaskul,Sebastian J. Crutch,Jason D. Warren,Jonathan D. Rohrer,Chris JD Hardy,Neil P. Oxtoby
出处
期刊:Brain [Oxford University Press]
被引量:1
标识
DOI:10.1093/brain/awae314
摘要

The primary progressive aphasias are rare, language-led dementias, with three main variants: semantic, non-fluent/agrammatic, and logopenic. Whilst semantic variant has a clear neuroanatomical profile, the non-fluent/agrammatic and logopenic variants are difficult to discriminate from neuroimaging. Previous phenotype-driven studies have characterised neuroanatomical profiles of each variant on MRI. In this work we used a machine learning algorithm known as SuStaIn to discover data-driven neuroanatomical "subtype" progression profiles and performed an in-depth subtype-phenotype analysis to characterise the heterogeneity of primary progressive aphasia. Our study included 270 participants with primary progressive aphasia seen for research in the UCL Queen Square Institute of Neurology Dementia Research Centre, with follow-up scans available for 137 participants. This dataset included individuals diagnosed with all three main variants (semantic: n=94, non-fluent/agrammatic: n=109, logopenic: n=51) as well as individuals with un-specified primary progressive aphasia (n=16). A data set of 66 patients (semantic n=37, non-fluent/agrammatic: n=29) from the ALLFTD North American cohort study, was used to validate our results. MRI scans were segmented and SuStaIn was employed on 19 regions of interest to identify neuroanatomical profiles independent of the diagnosis. We assessed the assignment of subtypes and stages, as well as their longitudinal consistency. We discovered four neuroanatomical subtypes of primary progressive aphasia, labelled S1 (left temporal), S2 (insula), S3 (temporoparietal), S4 (frontoparietal), exhibiting robustness to statistical scrutiny. S1 correlated strongly with semantic variant, while S2, S3, and S4 showed mixed associations with the logopenic and non-fluent/agrammatic variants. Notably, S3 displayed a neuroanatomical signature akin to a logopenic only signature, yet a significant proportion of logopenic cases were allocated to S2. The non-fluent/agrammatic variant demonstrated diverse associations with S2, S3, and S4. No clear relationship emerged between any of the neuroanatomical subtypes and the unspecified cases. At first follow up 84% of patients' subtype assignment was stable, and 91.9% of patients' stage assignment was stable. We partially validated our findings in the ALLFTD dataset, finding comparable qualitative patterns. Our study, leveraging machine learning on a large primary progressive aphasia dataset, delineated four distinct neuroanatomical patterns. Our findings suggest that separable spatio-temporal neuroanatomical phenotypes do exist within the PPA spectrum, but that these are noisy, particularly for nfvPPA and lvPPA. Furthermore, these phenotypes do not always conform to standard formulations of clinico-anatomical correlation. Understanding the multifaceted profiles of the disease, encompassing neuroanatomical, molecular, clinical, and cognitive dimensions, holds potential implications for clinical decision support.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oyly完成签到 ,获得积分10
1秒前
zhangjianzeng完成签到 ,获得积分10
2秒前
小v完成签到 ,获得积分10
8秒前
myq完成签到 ,获得积分10
10秒前
包容的忆灵完成签到 ,获得积分10
18秒前
谨慎的猫咪完成签到,获得积分10
20秒前
fuluyuzhe_668完成签到,获得积分10
24秒前
张海召完成签到,获得积分10
26秒前
28秒前
keyan完成签到,获得积分10
32秒前
大气的杨完成签到 ,获得积分10
32秒前
XuNan完成签到,获得积分10
33秒前
xu发布了新的文献求助10
33秒前
pengyh8完成签到 ,获得积分10
37秒前
Oliver完成签到 ,获得积分10
38秒前
moon完成签到 ,获得积分10
38秒前
魔幻的小蘑菇完成签到 ,获得积分10
39秒前
花生四烯酸完成签到 ,获得积分10
39秒前
有终完成签到 ,获得积分10
44秒前
xu完成签到,获得积分10
49秒前
迷路凌柏完成签到 ,获得积分10
53秒前
观妙散人完成签到,获得积分10
57秒前
向往生活完成签到,获得积分10
1分钟前
bener完成签到,获得积分10
1分钟前
优秀的dd完成签到 ,获得积分10
1分钟前
小燕子完成签到 ,获得积分10
1分钟前
小张完成签到 ,获得积分10
1分钟前
研友_ZGAeoL完成签到,获得积分10
1分钟前
南宫硕完成签到 ,获得积分10
1分钟前
hua完成签到,获得积分10
1分钟前
1分钟前
CYT完成签到,获得积分10
1分钟前
HY发布了新的文献求助100
1分钟前
一111发布了新的文献求助10
1分钟前
枫糖叶落完成签到,获得积分10
1分钟前
程雪霞完成签到,获得积分10
1分钟前
蕉鲁诺蕉巴纳完成签到,获得积分0
1分钟前
zyx8完成签到,获得积分10
1分钟前
al完成签到 ,获得积分0
1分钟前
wanci应助Zzzhu采纳,获得20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650012
关于积分的说明 14689432
捐赠科研通 4591885
什么是DOI,文献DOI怎么找? 2519386
邀请新用户注册赠送积分活动 1491921
关于科研通互助平台的介绍 1463118