芳纶
材料科学
气凝胶
复合数
复合材料
废物管理
纤维
工程类
作者
Hoşeng Bülbül,Meltem Yanılmaz,Juran Kim
标识
DOI:10.1177/15280837241279985
摘要
Lithium ion batteries are one of the most promising electrochemical energy storage systems. They generally consist of four components: anode, cathode, electrolyte, and separator. The separators are crucial for batteries since they prevent physical contact of electrodes and thus short circuit. In this study, reutilization of aramid fabric was highlighted by transforming it into a high value product: battery separator. A waste aramid fabric was used to synthesize aramid aerogels by deprotonation, sol-gel, and freeze-drying processes and then investigated as lithium ion battery separators. Aramid fabric was collected from a scrap plant of an industrial automotive company. Nanoclay or TiO 2 nanoparticles were added into this waste-based aramid aerogel matrix in the sol-gel stage to further enhance the performance of the separators. The samples were characterized by scanning electron microscope (SEM), linear sweep voltammetry, electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge tests. A uniform and bead-free morphology was observed for all samples with over 60% porosity. Electrolyte uptake and ionic conductivity test results showed that addition of TiO 2 nanoparticles increased electrolyte uptake and ionic conductivity up to 365% and 2.2 mS/cm, respectively. The cells prepared by using nanocomposite aramid aerogels with TiO 2 exhibited excellent cycling performance with a capacity of around 160 mAh/g in 200 cycles.
科研通智能强力驱动
Strongly Powered by AbleSci AI