Data from Multidimensional Fragmentomics Enables Early and Accurate Detection of Colorectal Cancer

结直肠癌 计算机科学 癌症 医学 内科学
作者
Yuepeng Cao,Nannan Wang,Xuxiaochen Wu,Wanxiangfu Tang,Hua Bao,Chengshuai Si,Peng Shao,Dongzheng Li,Xin Zhou,Dongqin Zhu,Shanshan Yang,Fufeng Wang,Guoqing Su,Ke Wang,Qifan Wang,Yao Zhang,Qiangcheng Wang,Dongsheng Yu,Qian Jiang,俊一 久保,Yang Liu
标识
DOI:10.1158/0008-5472.c.7474569
摘要

<div>Abstract<p>Colorectal cancer is frequently diagnosed in advanced stages, highlighting the need for developing approaches for early detection. Liquid biopsy using cell-free DNA (cfDNA) fragmentomics is a promising approach, but the clinical application is hindered by complexity and cost. This study aimed to develop an integrated model using cfDNA fragmentomics for accurate, cost-effective early-stage colorectal cancer detection. Plasma cfDNA was extracted and sequenced from a training cohort of 360 participants, including 176 patients with colorectal cancer and 184 healthy controls. An ensemble stacked model comprising five machine learning models was employed to distinguish patients with colorectal cancer from healthy controls using five cfDNA fragmentomic features. The model was validated in an independent cohort of 236 participants (117 patients with colorectal cancer and 119 controls) and a prospective cohort of 242 participants (129 patients with colorectal cancer and 113 controls). The ensemble stacked model showed remarkable discriminatory power between patients with colorectal cancer and controls, outperforming all base models and achieving a high area under the receiver operating characteristic curve of 0.986 in the validation cohort. It reached 94.88% sensitivity and 98% specificity for detecting colorectal cancer in the validation cohort, with sensitivity increasing as the cancer progressed. The model also demonstrated consistently high accuracy in within-run and between-run tests and across various conditions in healthy individuals. In the prospective cohort, it achieved 91.47% sensitivity and 95.58% specificity. This integrated model capitalizes on the multiplex nature of cfDNA fragmentomics to achieve high sensitivity and robustness, offering significant promise for early colorectal cancer detection and broad patient benefit.</p><p> <b>Significance:</b> The development of a minimally invasive, efficient approach for early colorectal cancer detection using advanced machine learning to analyze cfDNA fragment patterns could expedite diagnosis and improve treatment outcomes for patients.</p><p><i><a href="https://aacrjournals.org/cancerres/article-abstract/doi/10.1158/0008-5472.CAN-24-1620" target="_blank">See related commentary by Rolfo and Russo, p. 3128</a></i></p></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
Agernon应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
yzlsci完成签到,获得积分0
刚刚
Liar应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
刚刚
慕青应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
姜惠完成签到,获得积分10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
1秒前
dent强完成签到,获得积分10
1秒前
Ann完成签到,获得积分10
1秒前
陆碌路完成签到,获得积分10
1秒前
777完成签到,获得积分10
1秒前
呆鸥完成签到,获得积分10
2秒前
风吹麦田应助Wang采纳,获得10
2秒前
霍三石发布了新的文献求助10
2秒前
gxpjzbg完成签到,获得积分10
3秒前
bdsb完成签到,获得积分10
4秒前
夏夜晚风完成签到,获得积分10
4秒前
酷炫的红牛完成签到,获得积分10
4秒前
dadada完成签到 ,获得积分20
4秒前
4秒前
4秒前
SnLXn发布了新的文献求助50
5秒前
天真吴邪完成签到,获得积分10
5秒前
完美世界应助王QQ采纳,获得10
5秒前
5秒前
劣根完成签到,获得积分10
5秒前
liberty完成签到,获得积分10
5秒前
激动的萧发布了新的文献求助10
5秒前
南在南方完成签到,获得积分10
6秒前
ZMH完成签到,获得积分10
6秒前
159完成签到,获得积分10
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550592
求助须知:如何正确求助?哪些是违规求助? 3126842
关于积分的说明 9371114
捐赠科研通 2826084
什么是DOI,文献DOI怎么找? 1553517
邀请新用户注册赠送积分活动 724906
科研通“疑难数据库(出版商)”最低求助积分说明 714494