Development and validation of an explainable machine learning model for predicting multidimensional frailty in hospitalized patients with cirrhosis

概化理论 接收机工作特性 医学 机器学习 人工智能 肝硬化 腹水 计算机科学 随机森林 内科学 统计 数学
作者
Fang Yang,Chaoqun Li,Wanting Yang,Yumei He,Liping Wu,Kui Jiang,Chao Sun
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (6)
标识
DOI:10.1093/bib/bbae491
摘要

Abstract We sought to develop and validate a machine learning (ML) model for predicting multidimensional frailty based on clinical and laboratory data. Moreover, an explainable ML model utilizing SHapley Additive exPlanations (SHAP) was constructed. This study enrolled 622 patients hospitalized due to decompensating episodes at a tertiary hospital. The cohort data were randomly divided into training and test sets. External validation was carried out using 131 patients from other tertiary hospitals. The frail phenotype was defined according to a self-reported questionnaire (Frailty Index). The area under the receiver operating characteristics curve was adopted to compare the performance of five ML models. The importance of the features and interpretation of the ML models were determined using the SHAP method. The proportions of cirrhotic patients with nonfrail and frail phenotypes in combined training and test sets were 87.8% and 12.2%, respectively, while they were 88.5% and 11.5% in the external validation dataset. Five ML algorithms were used, and the random forest (RF) model exhibited substantially predictive performance. Regarding the external validation, the RF algorithm outperformed other ML models. Moreover, the SHAP method demonstrated that neutrophil-to-lymphocyte ratio, age, lymphocyte-to-monocyte ratio, ascites, and albumin served as the most important predictors for frailty. At the patient level, the SHAP force plot and decision plot exhibited a clinically meaningful explanation of the RF algorithm. We constructed an ML model (RF) providing accurate prediction of frail phenotype in decompensated cirrhosis. The explainability and generalizability may foster clinicians to understand contributors to this physiologically vulnerable situation and tailor interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜猫放羊发布了新的文献求助30
1秒前
4秒前
4秒前
洞两完成签到,获得积分10
4秒前
4秒前
6秒前
慕青应助研友_8yN60L采纳,获得10
8秒前
温暖的皮皮虾完成签到,获得积分10
8秒前
9秒前
江河发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
kaiser_e6发布了新的文献求助10
12秒前
12秒前
Orange应助盖了帽了采纳,获得10
12秒前
13秒前
heavenhorse应助xing1995采纳,获得10
13秒前
迷路藏今发布了新的文献求助10
14秒前
tengfei完成签到 ,获得积分10
15秒前
ljq发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
17秒前
Akim应助学霸宇大王采纳,获得10
19秒前
angchiul完成签到,获得积分10
19秒前
kaiser_e6完成签到,获得积分10
19秒前
Jasper应助彩色的过客采纳,获得10
20秒前
cocolu应助vivi采纳,获得10
20秒前
模糊中正应助明钟达采纳,获得20
20秒前
研友_8yN60L发布了新的文献求助10
21秒前
罗健完成签到,获得积分10
22秒前
华仔应助标致亦绿采纳,获得10
22秒前
ljq完成签到,获得积分20
23秒前
橘星发布了新的文献求助10
23秒前
oyc完成签到,获得积分10
23秒前
Oveja发布了新的文献求助10
24秒前
不配.应助一只老呆猪采纳,获得10
27秒前
29秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
Manufacturing Consent: Changes in the Labor Process under Monopoly Capitalism 500
The Politics of Production: Factory Regimes under Capitalism and Socialism 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3382990
求助须知:如何正确求助?哪些是违规求助? 2997404
关于积分的说明 8774594
捐赠科研通 2682931
什么是DOI,文献DOI怎么找? 1469353
科研通“疑难数据库(出版商)”最低求助积分说明 679368
邀请新用户注册赠送积分活动 671628