Generative Adversarial Networks With Radiomics Supervision for Lung Lesion Generation

无线电技术 对抗制 计算机科学 人工智能 生成语法 机器学习 模式识别(心理学)
作者
Junyuan Li,Shaoyan Pan,Xiaoxuan Zhang,Cheng Ting Lin,J. Webster Stayman,Grace J. Gang
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:72 (1): 286-296 被引量:2
标识
DOI:10.1109/tbme.2024.3451409
摘要

Data-driven methods for lesion generation are quickly emerging due to the need for realistic imaging targets for image quality assessment and virtual clinical trials. We proposed a generative adversarial network (GAN) architecture for conditional generation of lung lesions based on user-specified classes of lesion size and solidity. The network consists of two discriminators, one for volumetric lesion data, and one for radiomics features derived from the lesion volume. A Wasserstein loss with gradient penalty was adopted for each discriminator. Training data were drawn from contoured and annotated lesions from a public lung CT database. Four quantitative evaluation methods were devised to assess the network performance: 1) overfitting (similarity between generated and real lesions), 2) diversity (similarity among generated lesions), 3) conditional consistency (capability of generating lesions according to user-specified classes), and 4) similarity in distributions of various lesion properties between the generated and real lesions. Ablation studies were also performed to investigate the importance of individual network component. The proposed network was found to generate lesions that resemble real lesions by visual inspection. Solid lesions are distinct from non-solid ones, and lesion sizes largely correspond to their specified classes. With a classifier trained on real lesions, the classification accuracies of generated and real lesions in both solid and non-solid classes are similar. Radiomics features of generated and real lesions were found to have similar distributions, indicated by the relatively low Kullback-Leibler (KL) divergence values. Furthermore, the correlations between pairwise radiomics features in generated lesions were comparable to those of real lesions. The proposed network presents a promising approach for generating realistic lesions with clinically relevant features crucial for the comprehensive assessment of medical imaging systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
asdfzxcv应助科研通管家采纳,获得10
刚刚
XXXXY应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
lilili应助科研通管家采纳,获得10
刚刚
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
小乔应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
asdfzxcv应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得30
1秒前
1秒前
宁静致远完成签到,获得积分10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得30
1秒前
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
2秒前
完美犀牛完成签到,获得积分10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
Criminology34应助超帅的冷菱采纳,获得10
3秒前
Criminology34应助超帅的冷菱采纳,获得10
3秒前
Criminology34应助超帅的冷菱采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659634
求助须知:如何正确求助?哪些是违规求助? 4829587
关于积分的说明 15087769
捐赠科研通 4818327
什么是DOI,文献DOI怎么找? 2578595
邀请新用户注册赠送积分活动 1533172
关于科研通互助平台的介绍 1491902