Generative Adversarial Networks With Radiomics Supervision for Lung Lesion Generation

无线电技术 对抗制 计算机科学 人工智能 生成语法 机器学习 模式识别(心理学)
作者
Junyuan Li,Shaoyan Pan,Xiaoxuan Zhang,Cheng Ting Lin,J. Webster Stayman,Grace J. Gang
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:72 (1): 286-296 被引量:2
标识
DOI:10.1109/tbme.2024.3451409
摘要

Data-driven methods for lesion generation are quickly emerging due to the need for realistic imaging targets for image quality assessment and virtual clinical trials. We proposed a generative adversarial network (GAN) architecture for conditional generation of lung lesions based on user-specified classes of lesion size and solidity. The network consists of two discriminators, one for volumetric lesion data, and one for radiomics features derived from the lesion volume. A Wasserstein loss with gradient penalty was adopted for each discriminator. Training data were drawn from contoured and annotated lesions from a public lung CT database. Four quantitative evaluation methods were devised to assess the network performance: 1) overfitting (similarity between generated and real lesions), 2) diversity (similarity among generated lesions), 3) conditional consistency (capability of generating lesions according to user-specified classes), and 4) similarity in distributions of various lesion properties between the generated and real lesions. Ablation studies were also performed to investigate the importance of individual network component. The proposed network was found to generate lesions that resemble real lesions by visual inspection. Solid lesions are distinct from non-solid ones, and lesion sizes largely correspond to their specified classes. With a classifier trained on real lesions, the classification accuracies of generated and real lesions in both solid and non-solid classes are similar. Radiomics features of generated and real lesions were found to have similar distributions, indicated by the relatively low Kullback-Leibler (KL) divergence values. Furthermore, the correlations between pairwise radiomics features in generated lesions were comparable to those of real lesions. The proposed network presents a promising approach for generating realistic lesions with clinically relevant features crucial for the comprehensive assessment of medical imaging systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
wangtieling发布了新的文献求助10
刚刚
1秒前
砥砺前行完成签到 ,获得积分10
1秒前
那L6发布了新的文献求助10
1秒前
小蘑菇应助Hotony采纳,获得30
2秒前
写论文的完成签到 ,获得积分10
2秒前
2秒前
汉堡包应助英勇的多肉采纳,获得10
2秒前
pbj发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
小白云发布了新的文献求助30
3秒前
bigben446发布了新的文献求助30
3秒前
漂亮的不言完成签到 ,获得积分10
3秒前
3秒前
新月完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
熊熊发布了新的文献求助10
4秒前
TheMonster完成签到,获得积分10
5秒前
Mengxin发布了新的文献求助10
5秒前
5秒前
shanyuyulai完成签到 ,获得积分10
5秒前
吐丝麵包发布了新的文献求助30
5秒前
陈竺完成签到 ,获得积分10
6秒前
sunialnd完成签到,获得积分10
6秒前
852应助安详砖家采纳,获得10
6秒前
独见晓焉发布了新的文献求助10
6秒前
7秒前
李健应助白一闪采纳,获得10
7秒前
7秒前
u2u2完成签到,获得积分10
7秒前
8秒前
科研通AI2S应助ggg采纳,获得10
8秒前
8秒前
优秀星星完成签到,获得积分10
8秒前
9秒前
巴拉拉发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534