Generative Adversarial Networks With Radiomics Supervision for Lung Lesion Generation

无线电技术 对抗制 计算机科学 人工智能 生成语法 机器学习 模式识别(心理学)
作者
Junyuan Li,Shaoyan Pan,Xiaoxuan Zhang,Cheng Ting Lin,J. Webster Stayman,Grace J. Gang
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:72 (1): 286-296 被引量:2
标识
DOI:10.1109/tbme.2024.3451409
摘要

Data-driven methods for lesion generation are quickly emerging due to the need for realistic imaging targets for image quality assessment and virtual clinical trials. We proposed a generative adversarial network (GAN) architecture for conditional generation of lung lesions based on user-specified classes of lesion size and solidity. The network consists of two discriminators, one for volumetric lesion data, and one for radiomics features derived from the lesion volume. A Wasserstein loss with gradient penalty was adopted for each discriminator. Training data were drawn from contoured and annotated lesions from a public lung CT database. Four quantitative evaluation methods were devised to assess the network performance: 1) overfitting (similarity between generated and real lesions), 2) diversity (similarity among generated lesions), 3) conditional consistency (capability of generating lesions according to user-specified classes), and 4) similarity in distributions of various lesion properties between the generated and real lesions. Ablation studies were also performed to investigate the importance of individual network component. The proposed network was found to generate lesions that resemble real lesions by visual inspection. Solid lesions are distinct from non-solid ones, and lesion sizes largely correspond to their specified classes. With a classifier trained on real lesions, the classification accuracies of generated and real lesions in both solid and non-solid classes are similar. Radiomics features of generated and real lesions were found to have similar distributions, indicated by the relatively low Kullback-Leibler (KL) divergence values. Furthermore, the correlations between pairwise radiomics features in generated lesions were comparable to those of real lesions. The proposed network presents a promising approach for generating realistic lesions with clinically relevant features crucial for the comprehensive assessment of medical imaging systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Annie发布了新的文献求助10
1秒前
清爽老九完成签到,获得积分10
3秒前
4秒前
爱吃肉肉的手性分子完成签到,获得积分10
5秒前
土豆完成签到 ,获得积分10
6秒前
6秒前
清爽老九发布了新的文献求助10
9秒前
耶嘿发布了新的文献求助10
11秒前
12秒前
KekeJ发布了新的文献求助10
13秒前
微凉完成签到 ,获得积分10
13秒前
Magic完成签到,获得积分10
13秒前
青糯完成签到 ,获得积分10
17秒前
希望天下0贩的0应助Jodie采纳,获得10
18秒前
18秒前
22秒前
天天快乐应助微笑采纳,获得10
23秒前
24秒前
小二郎应助我要做科研狗采纳,获得30
26秒前
27秒前
28秒前
科目三应助Bonnienuit采纳,获得10
28秒前
海盗船长发布了新的文献求助10
29秒前
31秒前
jingcheng完成签到,获得积分10
32秒前
愉快碧凡发布了新的文献求助10
32秒前
33秒前
33秒前
Jodie发布了新的文献求助10
35秒前
orixero应助科研通管家采纳,获得10
37秒前
桐桐应助科研通管家采纳,获得10
37秒前
打打应助科研通管家采纳,获得10
37秒前
Ava应助科研通管家采纳,获得10
37秒前
Hello应助科研通管家采纳,获得10
37秒前
星辰大海应助科研通管家采纳,获得10
37秒前
Hello应助科研通管家采纳,获得10
37秒前
Lucas应助科研通管家采纳,获得10
37秒前
汉堡包应助科研通管家采纳,获得10
37秒前
上官若男应助科研通管家采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558022
求助须知:如何正确求助?哪些是违规求助? 4642970
关于积分的说明 14670064
捐赠科研通 4584444
什么是DOI,文献DOI怎么找? 2514849
邀请新用户注册赠送积分活动 1489006
关于科研通互助平台的介绍 1459630