Generative Adversarial Networks With Radiomics Supervision for Lung Lesion Generation

无线电技术 对抗制 计算机科学 人工智能 生成语法 机器学习 模式识别(心理学)
作者
Junyuan Li,Shaoyan Pan,Xiaoxuan Zhang,Cheng Ting Lin,J. Webster Stayman,Grace J. Gang
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:72 (1): 286-296 被引量:2
标识
DOI:10.1109/tbme.2024.3451409
摘要

Data-driven methods for lesion generation are quickly emerging due to the need for realistic imaging targets for image quality assessment and virtual clinical trials. We proposed a generative adversarial network (GAN) architecture for conditional generation of lung lesions based on user-specified classes of lesion size and solidity. The network consists of two discriminators, one for volumetric lesion data, and one for radiomics features derived from the lesion volume. A Wasserstein loss with gradient penalty was adopted for each discriminator. Training data were drawn from contoured and annotated lesions from a public lung CT database. Four quantitative evaluation methods were devised to assess the network performance: 1) overfitting (similarity between generated and real lesions), 2) diversity (similarity among generated lesions), 3) conditional consistency (capability of generating lesions according to user-specified classes), and 4) similarity in distributions of various lesion properties between the generated and real lesions. Ablation studies were also performed to investigate the importance of individual network component. The proposed network was found to generate lesions that resemble real lesions by visual inspection. Solid lesions are distinct from non-solid ones, and lesion sizes largely correspond to their specified classes. With a classifier trained on real lesions, the classification accuracies of generated and real lesions in both solid and non-solid classes are similar. Radiomics features of generated and real lesions were found to have similar distributions, indicated by the relatively low Kullback-Leibler (KL) divergence values. Furthermore, the correlations between pairwise radiomics features in generated lesions were comparable to those of real lesions. The proposed network presents a promising approach for generating realistic lesions with clinically relevant features crucial for the comprehensive assessment of medical imaging systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
红红完成签到,获得积分10
2秒前
3秒前
受伤白昼完成签到,获得积分10
3秒前
humble完成签到 ,获得积分10
3秒前
虚心沂完成签到,获得积分10
4秒前
缄默完成签到,获得积分20
4秒前
4秒前
PG完成签到 ,获得积分10
4秒前
无极微光应助Stone采纳,获得20
4秒前
仙女发布了新的文献求助10
4秒前
joe_liu发布了新的文献求助10
5秒前
5秒前
5秒前
Criminology34应助淡定若采纳,获得10
6秒前
和谐续完成签到 ,获得积分10
6秒前
momo完成签到,获得积分10
6秒前
feng完成签到,获得积分10
6秒前
zhongying完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
紧张的书文完成签到 ,获得积分10
7秒前
完美蘑菇完成签到 ,获得积分10
7秒前
后知后觉完成签到,获得积分10
8秒前
苹果南烟完成签到,获得积分10
8秒前
土豪的紫荷完成签到 ,获得积分10
8秒前
科研搬运工完成签到,获得积分10
8秒前
向雅完成签到,获得积分10
8秒前
锡嘻发布了新的文献求助10
8秒前
Youdge完成签到,获得积分10
8秒前
9秒前
儒雅的翠琴完成签到,获得积分10
9秒前
鹿多多完成签到,获得积分10
9秒前
10秒前
小飞爱科研完成签到,获得积分10
10秒前
可爱的小丸子完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
满意鲂发布了新的文献求助30
11秒前
昀松应助自然的翠桃采纳,获得10
11秒前
有人应助风里等你采纳,获得10
11秒前
阿刁完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773617
求助须知:如何正确求助?哪些是违规求助? 5612760
关于积分的说明 15431930
捐赠科研通 4906024
什么是DOI,文献DOI怎么找? 2640036
邀请新用户注册赠送积分活动 1587869
关于科研通互助平台的介绍 1542957