Generative Adversarial Networks with Radiomics Supervision for Lung Lesion Generation

无线电技术 对抗制 计算机科学 人工智能 生成语法 机器学习 模式识别(心理学)
作者
Junyuan Li,Shaoyan Pan,Xiaoxuan Zhang,Cheng Ting Lin,J. Webster Stayman,Grace J. Gang
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/tbme.2024.3451409
摘要

Data-driven methods for lesion generation are quickly emerging due to the need for realistic imaging targets for image quality assessment and virtual clinical trials. We proposed a generative adversarial network (GAN) architecture for conditional generation of lung lesions based on user-specified classes of lesion size and solidity. The network consists of two discriminators, one for volumetric lesion data, and one for radiomics features derived from the lesion volume. A Wasserstein loss with gradient penalty was adopted for each discriminator. Training data were drawn from contoured and annotated lesions from a public lung CT database. Four quantitative evaluation methods were devised to assess the network performance: 1) overfitting (similarity between generated and real lesions), 2) diversity (similarity among generated lesions), 3) conditional consistency (capability of generating lesions according to user-specified classes), and 4) similarity in distributions of various lesion properties between the generated and real lesions. Ablation studies were also performed to investigate the importance of individual network component. The proposed network was found to generate lesions that resemble real lesions by visual inspection. Solid lesions are distinct from non-solid ones, and lesion sizes largely correspond to their specified classes. With a classifier trained on real lesions, the classification accuracies of generated and real lesions in both solid and non-solid classes are similar. Radiomics features of generated and real lesions were found to have similar distributions, indicated by the relatively low Kullback-Leibler (KL) divergence values. Furthermore, the correlations between pairwise radiomics features in generated lesions were comparable to those of real lesions. The proposed network presents a promising approach for generating realistic lesions with clinically relevant features crucial for the comprehensive assessment of medical imaging systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉完成签到 ,获得积分10
1秒前
guohh完成签到,获得积分10
1秒前
dd完成签到,获得积分10
2秒前
2秒前
尉迟希望应助大侠采纳,获得10
3秒前
活泼的活泼完成签到,获得积分10
3秒前
成就的大米完成签到,获得积分10
3秒前
美满的惜霜完成签到,获得积分10
4秒前
zz完成签到,获得积分10
4秒前
姜鲅发布了新的文献求助10
4秒前
彭于晏应助lzy采纳,获得30
4秒前
AHMADREZA完成签到,获得积分20
4秒前
wanfeng发布了新的文献求助10
5秒前
yi完成签到,获得积分10
5秒前
fiona发布了新的文献求助10
5秒前
5秒前
Andy完成签到 ,获得积分10
6秒前
打打应助doctor采纳,获得10
8秒前
开心超人完成签到,获得积分10
8秒前
wzy完成签到,获得积分10
8秒前
8秒前
盼风思月应助windmill采纳,获得10
8秒前
哈噗咻发布了新的文献求助10
10秒前
狼牧羊城完成签到,获得积分10
10秒前
amoresk发布了新的文献求助10
10秒前
Hester完成签到,获得积分0
11秒前
可乐完成签到 ,获得积分10
11秒前
11秒前
QW111完成签到,获得积分20
11秒前
健壮绍辉发布了新的文献求助10
12秒前
12秒前
刚好夏天完成签到 ,获得积分10
12秒前
bamboo发布了新的文献求助10
12秒前
14秒前
Olsters完成签到,获得积分10
14秒前
小周同学完成签到 ,获得积分10
14秒前
14秒前
懵懂的凝丹完成签到 ,获得积分10
14秒前
嘻嘻完成签到 ,获得积分10
14秒前
mwm621完成签到,获得积分10
14秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337004
求助须知:如何正确求助?哪些是违规求助? 4474294
关于积分的说明 13923554
捐赠科研通 4369116
什么是DOI,文献DOI怎么找? 2400580
邀请新用户注册赠送积分活动 1393641
关于科研通互助平台的介绍 1365542