The electronic and functional synergies between the twin metal centers make dual single-atom catalysts (DACs) attractive for oxygen electrocatalysis. The catalytic activities of DACs are largely decided by their surrounding micro-environment and supporting substrates. Modulating the micro-environment as well as engineering the efficient support is challenging tasks. Moreover, both are critical to optimizing the performance of DACs. Herein, a novel bio-cooperative strategy is developed to synthesize FeNi-DAC wherein Fe-Ni dual-atom sites are embedded in the N, P codoped tyre shaped carbon matrix. The configuration matching of Fe-Ni dual centers together with the local electronic engineering of N, P heteroatoms synergistically boost the catalytic activity on the oxygen reaction. Furthermore, the central-hollow highly-porous carbon matrix not only gives rise to a large amount of active sites, but also facilitates fast kinetics. Taking advantage of both the DAC and the substrate, the FeNi-NPC hollow tyre (HT) catalyst scores high in both oxygen reduction and evolution reactions, which exhibits the narrow potential difference and excellent durability. The aqueous Zn-air full battery (ZAB) integrating the FeNi-NPC HT air cathode has a high power density and a good stability over long-term cycling. Moreover, the flexible solid-state ZAB assembled with the polymer electrolyte obtains the high reliability over a wide range of temperatures or under diverse outside deformations. Therefore, this work offers a new green approach to prepare highly efficient DACs with built-in modulated micro-environment and tailor-made substrates. Moreover, it also paves a new way to develop highly-pliable power source for flexible electronics.