计算机科学
估计员
线性子空间
子空间拓扑
可解释性
词根(语言学)
算法
到达方向
自相关
噪音(视频)
人工智能
语音识别
模式识别(心理学)
数学
电信
统计
语言学
哲学
几何学
天线(收音机)
图像(数学)
作者
Dor H. Shmuel,Julian P. Merkofer,Guy Revach,Ruud J. G. van Sloun,Nir Shlezinger
标识
DOI:10.1109/icassp49357.2023.10096504
摘要
Direction of arrival (DoA) estimation is a fundamental task in array processing. A popular family of DoA estimation algorithms are subspace methods, which operate by dividing the measurements into distinct signal and noise subspaces. Subspace methods, such as Root-MUSIC, require the sources to be non-coherent, and are considerably degraded when this does not hold. In this work we propose Deep Root-MUSIC (DR-MUSIC); a data-driven DoA estimator which augments Root-MUSIC with a deep neural network applied to the empirical autocorrelation of the input. DR-MUSIC learns how to divide the observations into distinguishable subspaces, thus leveraging data to cope with coherent sources, low SNR and limited snapshots, while preserving the interpretability and the suitability of the model-based algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI