高密度聚乙烯
材料科学
复合材料
硅酮
聚乙烯
流变学
聚乙二醇
增容
聚合物混合物
聚合物
化学工程
共聚物
工程类
作者
Jie Liu,Tongcheng Jin,Shengxue Qin,Hongbin Zhang,Haiping Zhou
摘要
Abstract The challenging melt processing of ultrahigh‐molecular‐weight polyethylene (UHMWPE) melt spinning hinders its efficiency and quality, which can be improved by processing aids that enhance its flowability. Building upon modifications of UHMWPE with high‐density polyethylene (HDPE), this article studies the effects of CaSt 2 , polyethylene glycol (PEG), silicone powder, and their compound additives on the processing performance of UHMWPE/HDPE blends. The modification effects and mechanisms are studied by analyzing processing torque, melt flow rate, viscoelastic activation energy, and rheological performance. The research results indicate that 1 wt% PEG significantly improves the processing flowability of UHMWPE/HDPE blends, and PEG mainly plays an internal lubrication role on the molecular chains of the blends. The combination of 0.5 wt% CaSt 2 and 0.5 wt% silicone powder exhibits a synergistic effect of internal and external lubrication on the UHMWPE/HDPE blends melt processing, further improving the processing performance of UHMWPE/HDPE blends. Compared with unmodified blends, the maximum screw speed for obtaining qualified as‐spun filaments of UHMWPE/HDPE blends modified with CaSt 2 /silicone powder compound additives increases from 5 to 20 rpm, which means that the critical shear rate of the modified UHMWPE/HDPE blend melt processing is significantly improved. Meanwhile, the processing torque decreases by about 22%.
科研通智能强力驱动
Strongly Powered by AbleSci AI