已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sustainable cold supply chain design for livestock and perishable products using data-driven robust optimization

牲畜 供应链 业务 计算机科学 冷链 环境经济学 营销 经济 食品科学 生态学 化学 生物
作者
Amir Arabsheybani,Alireza Arshadi Khamseh,Mir Saman Pishvaee
出处
期刊:international journal of management science and engineering management 卷期号:19 (4): 305-320 被引量:6
标识
DOI:10.1080/17509653.2024.2331501
摘要

Food products are a critical part of everyday life. To increase the efficiency of the food supply chain, designing a comprehensive mathematical is necessary. This study tries to optimize a protein supply chain. This supply chain is divided into livestock and perishable products. The integration of these two supply chain echelons has been applied to create an extensive model. Moreover, sustainability has been considered as a competitive advantage in the chain. Perishable products are temperature-sensitive. Hence, a cold supply chain has been considered. The model has three objective functions: maximizing the total profit, minimizing the storage cost in the cold chain, minimizing the health risk. In dealing with uncertainty, a data-driven robust optimization method has been used. Therefore, this paper used machine learning to construct the uncertainty sets from historical data. The Torabi-Hassini method has been implemented to solve the multi-objective model. Finally, to show the applicability and efficiency of the proposed approach, a real-world case study on the poultry supply chain, including abattoirs, breeding centers, slaughtering, and selling branches, has been applied. The result shows that this methodology significantly influences total profits and improves the environmental criteria in a real-world case study. Moreover, different sensitivity analyses have been prepared to help managers make a trade-off between the robustness of the model and objective function value with various weights and calculate the influence of supply chain integration on objective functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脆脆应答完成签到,获得积分10
刚刚
1秒前
SciGPT应助木同人采纳,获得10
2秒前
小船发布了新的文献求助10
2秒前
3秒前
zho应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
七里香发布了新的文献求助30
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
lily完成签到,获得积分10
6秒前
Ralap发布了新的文献求助50
7秒前
llll完成签到,获得积分10
8秒前
zcx发布了新的文献求助10
9秒前
Cassiel发布了新的文献求助30
10秒前
11秒前
七里香完成签到,获得积分10
13秒前
13秒前
14秒前
小船完成签到,获得积分10
14秒前
田様应助阳光的访烟采纳,获得10
15秒前
huy完成签到 ,获得积分10
17秒前
junbin发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
18秒前
薛冰雪发布了新的文献求助10
18秒前
bkagyin应助陪七七去旅行采纳,获得10
18秒前
英俊的铭应助安静的雁兰采纳,获得10
19秒前
allshestar完成签到 ,获得积分10
20秒前
单薄的誉发布了新的文献求助10
21秒前
llll发布了新的文献求助10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526225
求助须知:如何正确求助?哪些是违规求助? 3106584
关于积分的说明 9281078
捐赠科研通 2804174
什么是DOI,文献DOI怎么找? 1539323
邀请新用户注册赠送积分活动 716529
科研通“疑难数据库(出版商)”最低求助积分说明 709495