A Tutorial-Generating Method for Autonomous Online Learning

计算机科学 强化学习 领域(数学) 个性化学习 生成语法 人机交互 生成模型 人工智能 合作学习 开放式学习 教学方法 数学 政治学 纯数学 法学
作者
Xiang Wu,Huanhuan Wang,Yongting Zhang,Baowen Zou,Huaqing Hong
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 1558-1567 被引量:3
标识
DOI:10.1109/tlt.2024.3390593
摘要

Generative AI has become the focus of the intelligent education field, especially in the generation of personalized learning resources. Current learning resource generation methods recommend customized courses based on learning styles and interests, improving learning efficiency. However, these methods cannot generate personalized tutorials according to learners' preferences, nor can they adjust tutorial content as moods or levels of knowledge change. Therefore, this study develops an intelligent tutorial-generating system (Self-GT) for self-aid learning, integrating cognitive computing and generative learning to capture learners' dynamic preferences. The critical components of Self-GT are the tutorial-generating model based on cyclic deep reinforcement learning (RL) and the multi-modal knowledge graph containing complex relationships. Specifically, the proposed RL model dynamically explores learners' preferences from the temporal dimension, enabling RL agents to express learning behavior characteristics accurately and generate personalized tutorials. Then, relying on the internal self-developed education base and external internet sources, a multi-modal knowledge graph with multiple self-defined relationships is designed to enhance the precision of tutorial generation. Finally, the experimental results indicate that the Self-GT performs well in generating tutorials and has been successfully applied in the generating tutorial for "Hospital Network Architecture Planning and Design."
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助shako采纳,获得10
3秒前
3秒前
嘿嘿发布了新的文献求助10
3秒前
4秒前
6秒前
Dawn完成签到,获得积分10
6秒前
缥缈完成签到,获得积分10
8秒前
8秒前
jwxstc发布了新的文献求助10
9秒前
12秒前
13秒前
李健应助jason采纳,获得10
13秒前
科研通AI5应助jwxstc采纳,获得10
14秒前
14秒前
尊敬沧海发布了新的文献求助10
14秒前
15秒前
科研怪兽完成签到,获得积分20
16秒前
嘿嘿完成签到,获得积分10
16秒前
汉堡包应助爱撒娇的冰安采纳,获得10
17秒前
Auto完成签到 ,获得积分10
19秒前
WJY发布了新的文献求助10
19秒前
stick完成签到,获得积分10
19秒前
20秒前
20秒前
ee关闭了ee文献求助
21秒前
21秒前
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
SYLH应助科研通管家采纳,获得10
21秒前
21秒前
半柚应助科研通管家采纳,获得10
21秒前
852应助科研通管家采纳,获得10
21秒前
汉堡包应助科研通管家采纳,获得10
21秒前
天天快乐应助科研通管家采纳,获得10
21秒前
情怀应助科研通管家采纳,获得10
21秒前
打打应助科研通管家采纳,获得10
21秒前
21秒前
半柚应助科研通管家采纳,获得20
21秒前
斯文败类应助科研通管家采纳,获得10
21秒前
SYLH应助科研通管家采纳,获得10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732526
求助须知:如何正确求助?哪些是违规求助? 3276777
关于积分的说明 9998504
捐赠科研通 2992330
什么是DOI,文献DOI怎么找? 1642177
邀请新用户注册赠送积分活动 780239
科研通“疑难数据库(出版商)”最低求助积分说明 748713