A Tutorial-Generating Method for Autonomous Online Learning

计算机科学 强化学习 领域(数学) 个性化学习 生成语法 人机交互 生成模型 人工智能 合作学习 开放式学习 教学方法 数学 政治学 纯数学 法学
作者
Xiang Wu,Huanhuan Wang,Yongting Zhang,Baowen Zou,Huaqing Hong
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 1558-1567 被引量:3
标识
DOI:10.1109/tlt.2024.3390593
摘要

Generative AI has become the focus of the intelligent education field, especially in the generation of personalized learning resources. Current learning resource generation methods recommend customized courses based on learning styles and interests, improving learning efficiency. However, these methods cannot generate personalized tutorials according to learners' preferences, nor can they adjust tutorial content as moods or levels of knowledge change. Therefore, this study develops an intelligent tutorial-generating system (Self-GT) for self-aid learning, integrating cognitive computing and generative learning to capture learners' dynamic preferences. The critical components of Self-GT are the tutorial-generating model based on cyclic deep reinforcement learning (RL) and the multi-modal knowledge graph containing complex relationships. Specifically, the proposed RL model dynamically explores learners' preferences from the temporal dimension, enabling RL agents to express learning behavior characteristics accurately and generate personalized tutorials. Then, relying on the internal self-developed education base and external internet sources, a multi-modal knowledge graph with multiple self-defined relationships is designed to enhance the precision of tutorial generation. Finally, the experimental results indicate that the Self-GT performs well in generating tutorials and has been successfully applied in the generating tutorial for "Hospital Network Architecture Planning and Design."
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助余偲采纳,获得10
1秒前
FashionBoy应助流星采纳,获得10
3秒前
cocolu应助是小小李哇采纳,获得10
4秒前
4秒前
深情安青应助只好采纳,获得10
5秒前
郭郭完成签到,获得积分10
6秒前
华仔应助rxy采纳,获得10
6秒前
不安青牛应助zhuyimin913采纳,获得10
8秒前
8秒前
9秒前
PhD-SCAU完成签到,获得积分10
11秒前
rr发布了新的文献求助10
11秒前
13秒前
14秒前
Weylai发布了新的文献求助10
14秒前
你看风扇转不转完成签到,获得积分10
15秒前
斑布发布了新的文献求助30
16秒前
流星发布了新的文献求助10
16秒前
nhjiebio发布了新的文献求助10
17秒前
18秒前
修狗完成签到,获得积分10
19秒前
19秒前
不安青牛应助zhuyimin913采纳,获得10
19秒前
21秒前
21秒前
ivy发布了新的文献求助10
24秒前
李牛牛完成签到,获得积分10
25秒前
灭霸完成签到,获得积分20
25秒前
草莓发布了新的文献求助10
26秒前
慕青应助yujie采纳,获得10
27秒前
Forever发布了新的文献求助10
28秒前
28秒前
灭霸发布了新的文献求助20
29秒前
zzzz完成签到,获得积分10
29秒前
29秒前
peili应助ivy采纳,获得30
30秒前
毛豆应助ivy采纳,获得10
30秒前
31秒前
Singularity应助是小小李哇采纳,获得10
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455164
求助须知:如何正确求助?哪些是违规求助? 3050441
关于积分的说明 9021374
捐赠科研通 2739114
什么是DOI,文献DOI怎么找? 1502413
科研通“疑难数据库(出版商)”最低求助积分说明 694501
邀请新用户注册赠送积分活动 693293