Artificial intelligence for detection of effusion and lipo-hemarthrosis in X-rays and CT of the knee

关节炎 医学 渗出 放射科 射线照相术 减法 核医学 外科 数学 算术
作者
Israel Cohen,Vera Sorin,Ruth Lekach,Daniel Raskin,Maria Segev,Eyal Klang,Iris Eshed,Yiftach Barash
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:175: 111460-111460 被引量:1
标识
DOI:10.1016/j.ejrad.2024.111460
摘要

Traumatic knee injuries are challenging to diagnose accurately through radiography and to a lesser extent, through CT, with fractures sometimes overlooked. Ancillary signs like joint effusion or lipo-hemarthrosis are indicative of fractures, suggesting the need for further imaging. Artificial Intelligence (AI) can automate image analysis, improving diagnostic accuracy and help prioritizing clinically important X-ray or CT studies.To develop and evaluate an AI algorithm for detecting effusion of any kind in knee X-rays and selected CT images and distinguishing between simple effusion and lipo-hemarthrosis indicative of intra-articular fractures.This retrospective study analyzed post traumatic knee imaging from January 2016 to February 2023, categorizing images into lipo-hemarthrosis, simple effusion, or normal. It utilized the FishNet-150 algorithm for image classification, with class activation maps highlighting decision-influential regions. The AI's diagnostic accuracy was validated against a gold standard, based on the evaluations made by a radiologist with at least four years of experience.Analysis included CT images from 515 patients and X-rays from 637 post traumatic patients, identifying lipo-hemarthrosis, simple effusion, and normal findings. The AI showed an AUC of 0.81 for detecting any effusion, 0.78 for simple effusion, and 0.83 for lipo-hemarthrosis in X-rays; and 0.89, 0.89, and 0.91, respectively, in CTs.The AI algorithm effectively detects knee effusion and differentiates between simple effusion and lipo-hemarthrosis in post-traumatic patients for both X-rays and selected CT images further studies are needed to validate these results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柚子街发布了新的文献求助10
刚刚
学术猪八戒完成签到,获得积分10
刚刚
1秒前
2秒前
aaa发布了新的文献求助10
3秒前
3秒前
CipherSage应助清风不渡夜采纳,获得10
3秒前
MOMO科研版关注了科研通微信公众号
3秒前
九又四分之三完成签到,获得积分10
3秒前
领导范儿应助科研通管家采纳,获得10
5秒前
maox1aoxin应助科研通管家采纳,获得30
5秒前
bjbmtxy应助科研通管家采纳,获得20
5秒前
5秒前
5秒前
Owen应助科研通管家采纳,获得10
5秒前
ding发布了新的文献求助30
6秒前
6秒前
qin完成签到,获得积分10
6秒前
7秒前
8秒前
sjz发布了新的文献求助10
8秒前
咕噜快逃完成签到,获得积分10
8秒前
专注映安完成签到 ,获得积分10
8秒前
9秒前
孝艺发布了新的文献求助10
10秒前
charllie完成签到 ,获得积分10
12秒前
殊晗发布了新的文献求助10
13秒前
14秒前
半醒完成签到,获得积分10
14秒前
dilxat发布了新的文献求助10
15秒前
时尚灵安完成签到 ,获得积分20
17秒前
18秒前
如约而至完成签到 ,获得积分10
19秒前
FashionBoy应助信封_采纳,获得10
21秒前
甜椒铜豌豆完成签到,获得积分10
21秒前
只是朋友还是完成签到,获得积分10
22秒前
小二郎应助迅速的时光采纳,获得10
24秒前
科研通AI5应助tom采纳,获得10
24秒前
闪闪的完成签到,获得积分10
25秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Wind energy generation systems - Part 3-2: Design requirements for floating offshore wind turbines 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Conceptualizing 21st-Century Archives (2014) 238
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3693361
求助须知:如何正确求助?哪些是违规求助? 3244057
关于积分的说明 9845755
捐赠科研通 2956054
什么是DOI,文献DOI怎么找? 1620742
邀请新用户注册赠送积分活动 766727
科研通“疑难数据库(出版商)”最低求助积分说明 740517