Graph Structure Enhanced Pre-Training Language Model for Knowledge Graph Completion

计算机科学 图形 人工智能 自然语言处理 理论计算机科学
作者
Huashi Zhu,Dexuan Xu,Yu Huang,Zhi Jin,Weiping Ding,Jiahui Tong,Guoshuang Chong
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (4): 2697-2708 被引量:16
标识
DOI:10.1109/tetci.2024.3372442
摘要

A vast amount of textual and structural information is required for knowledge graph construction and its downstream tasks. However, most of the current knowledge graphs are incomplete due to the difficulty of knowledge acquisition and integration. Knowledge Graph Completion (KGC) is used to predict missing connections. In previous studies, textual information and graph structural information are utilized independently, without an effective method for fusing these two types of information. In this paper, we propose a graph structure enhanced pre-training language model for knowledge graph completion. Firstly, we design a graph sampling algorithm and a Graph2Seq module for constructing sub-graphs and their corresponding contexts to support large-scale knowledge graph learning and parallel training. It is also the basis for fusing textual data and graph structure. Next, two pre-training tasks based on masked modeling are designed for capturing accurate entity-level and relation-level information. Furthermore, this paper proposes a novel asymmetric Encoder-Decoder architecture to restore masked components, where the encoder is a Pre-trained Language Model (PLM) and the decoder is a multi-relational Graph Neural Network (GNN). The purpose of the architecture is to integrate textual information effectively with graph structural information. Finally, the model is fine-tuned for KGC tasks on two widely used public datasets. The experiments show that the model achieves excellent performance and outperforms baselines in most metrics, which demonstrate the effectiveness of our approach by fusing the structure and semantic information to knowledge graph.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣怜烟发布了新的文献求助15
1秒前
共享精神应助菰蒲采纳,获得10
2秒前
神明发布了新的文献求助10
3秒前
王辰宁关注了科研通微信公众号
3秒前
EED发布了新的文献求助10
6秒前
6秒前
liyi完成签到,获得积分10
7秒前
田様应助阔达碧空采纳,获得10
8秒前
丘比特应助青衫采纳,获得10
9秒前
10秒前
kingwill应助谦让含玉采纳,获得20
11秒前
佳音完成签到,获得积分20
11秒前
想抱发布了新的文献求助10
11秒前
Gdhdjxbbx发布了新的文献求助10
12秒前
Lucas应助笨薯泥采纳,获得10
12秒前
时舒发布了新的文献求助10
13秒前
李朋发布了新的文献求助10
14秒前
英俊的铭应助EED采纳,获得10
14秒前
不敢装睡发布了新的文献求助30
15秒前
炸毛娟发布了新的文献求助10
15秒前
15秒前
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
华仔应助zhang采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得30
16秒前
无花果应助科研通管家采纳,获得10
16秒前
李健应助童话采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
17秒前
17秒前
SYLH应助科研通管家采纳,获得20
17秒前
17秒前
17秒前
17秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992495
求助须知:如何正确求助?哪些是违规求助? 3533431
关于积分的说明 11262369
捐赠科研通 3273025
什么是DOI,文献DOI怎么找? 1805895
邀请新用户注册赠送积分活动 882800
科研通“疑难数据库(出版商)”最低求助积分说明 809496