已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Graph Structure Enhanced Pre-Training Language Model for Knowledge Graph Completion

计算机科学 图形 人工智能 自然语言处理 理论计算机科学
作者
Huashi Zhu,Dexuan Xu,Yu Huang,Zhi Jin,Weiping Ding,Jiahui Tong,Guoshuang Chong
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (4): 2697-2708 被引量:21
标识
DOI:10.1109/tetci.2024.3372442
摘要

A vast amount of textual and structural information is required for knowledge graph construction and its downstream tasks. However, most of the current knowledge graphs are incomplete due to the difficulty of knowledge acquisition and integration. Knowledge Graph Completion (KGC) is used to predict missing connections. In previous studies, textual information and graph structural information are utilized independently, without an effective method for fusing these two types of information. In this paper, we propose a graph structure enhanced pre-training language model for knowledge graph completion. Firstly, we design a graph sampling algorithm and a Graph2Seq module for constructing sub-graphs and their corresponding contexts to support large-scale knowledge graph learning and parallel training. It is also the basis for fusing textual data and graph structure. Next, two pre-training tasks based on masked modeling are designed for capturing accurate entity-level and relation-level information. Furthermore, this paper proposes a novel asymmetric Encoder-Decoder architecture to restore masked components, where the encoder is a Pre-trained Language Model (PLM) and the decoder is a multi-relational Graph Neural Network (GNN). The purpose of the architecture is to integrate textual information effectively with graph structural information. Finally, the model is fine-tuned for KGC tasks on two widely used public datasets. The experiments show that the model achieves excellent performance and outperforms baselines in most metrics, which demonstrate the effectiveness of our approach by fusing the structure and semantic information to knowledge graph.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麻辣小龙虾完成签到,获得积分10
1秒前
1秒前
Zhou完成签到,获得积分10
1秒前
独特忆灵完成签到,获得积分10
6秒前
俏皮短靴发布了新的文献求助10
7秒前
慕青应助土又鸟采纳,获得10
7秒前
8秒前
8秒前
保奔完成签到,获得积分10
9秒前
TonyLee完成签到,获得积分10
9秒前
小马甲应助wop111采纳,获得10
10秒前
123发布了新的文献求助10
13秒前
银玥完成签到,获得积分20
17秒前
18秒前
华仔应助YT采纳,获得10
20秒前
保奔发布了新的文献求助10
23秒前
25秒前
jzx完成签到,获得积分10
25秒前
啊魏发布了新的文献求助10
27秒前
木头人发布了新的文献求助10
29秒前
zyzraylene完成签到,获得积分10
30秒前
y一一完成签到 ,获得积分10
32秒前
33秒前
磐xst完成签到 ,获得积分10
34秒前
徐1完成签到 ,获得积分10
35秒前
40秒前
JETSTREAM完成签到,获得积分10
44秒前
奋进的熊完成签到,获得积分10
44秒前
爱笑纸鹤发布了新的文献求助10
44秒前
花陵完成签到 ,获得积分10
44秒前
44秒前
hxt完成签到,获得积分10
46秒前
wanci应助Self-made采纳,获得10
47秒前
桐桐应助木禾采纳,获得10
48秒前
鲸jing发布了新的文献求助10
49秒前
52秒前
围城完成签到 ,获得积分10
52秒前
馒头完成签到 ,获得积分10
53秒前
star应助啊魏采纳,获得10
54秒前
JamesPei应助了了采纳,获得10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301612
求助须知:如何正确求助?哪些是违规求助? 4449085
关于积分的说明 13847800
捐赠科研通 4335167
什么是DOI,文献DOI怎么找? 2380143
邀请新用户注册赠送积分活动 1375107
关于科研通互助平台的介绍 1341144