亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph Structure Enhanced Pre-Training Language Model for Knowledge Graph Completion

计算机科学 图形 人工智能 自然语言处理 理论计算机科学
作者
Huashi Zhu,Dexuan Xu,Yu Huang,Zhi Jin,Weiping Ding,Jiahui Tong,Guoshuang Chong
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (4): 2697-2708 被引量:15
标识
DOI:10.1109/tetci.2024.3372442
摘要

A vast amount of textual and structural information is required for knowledge graph construction and its downstream tasks. However, most of the current knowledge graphs are incomplete due to the difficulty of knowledge acquisition and integration. Knowledge Graph Completion (KGC) is used to predict missing connections. In previous studies, textual information and graph structural information are utilized independently, without an effective method for fusing these two types of information. In this paper, we propose a graph structure enhanced pre-training language model for knowledge graph completion. Firstly, we design a graph sampling algorithm and a Graph2Seq module for constructing sub-graphs and their corresponding contexts to support large-scale knowledge graph learning and parallel training. It is also the basis for fusing textual data and graph structure. Next, two pre-training tasks based on masked modeling are designed for capturing accurate entity-level and relation-level information. Furthermore, this paper proposes a novel asymmetric Encoder-Decoder architecture to restore masked components, where the encoder is a Pre-trained Language Model (PLM) and the decoder is a multi-relational Graph Neural Network (GNN). The purpose of the architecture is to integrate textual information effectively with graph structural information. Finally, the model is fine-tuned for KGC tasks on two widely used public datasets. The experiments show that the model achieves excellent performance and outperforms baselines in most metrics, which demonstrate the effectiveness of our approach by fusing the structure and semantic information to knowledge graph.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉傲松发布了新的文献求助10
5秒前
12秒前
19秒前
Chloe发布了新的文献求助10
24秒前
孤芳自赏IrisKing完成签到 ,获得积分10
24秒前
28秒前
37秒前
38秒前
iacir33发布了新的文献求助10
43秒前
Chloe完成签到,获得积分10
44秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
1分钟前
1分钟前
perdgs发布了新的文献求助10
1分钟前
墨言无殇完成签到 ,获得积分10
1分钟前
ghjkl发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
健达完成签到,获得积分10
1分钟前
iacir33完成签到,获得积分10
1分钟前
香蕉觅云应助腼腆的若雁采纳,获得10
1分钟前
1分钟前
perdgs发布了新的文献求助10
1分钟前
1分钟前
2分钟前
perdgs完成签到,获得积分10
2分钟前
2分钟前
LJL发布了新的文献求助10
2分钟前
hhhhhhh完成签到,获得积分10
2分钟前
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
君什发布了新的文献求助10
3分钟前
酱油C完成签到,获得积分20
3分钟前
3分钟前
高分求助中
Востребованный временем 2500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Principles of Ultraviolet Photoelectron Spectroscopy 500
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3431147
求助须知:如何正确求助?哪些是违规求助? 3029432
关于积分的说明 8932893
捐赠科研通 2717137
什么是DOI,文献DOI怎么找? 1490479
科研通“疑难数据库(出版商)”最低求助积分说明 688849
邀请新用户注册赠送积分活动 684787