已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of Peptide-based Metallo-β-lactamase Inhibitors as a New Strategy to Combat Antimicrobial Resistance: A Mini-review

生物信息学 抗菌剂 抗生素耐药性 生物 对接(动物) 序列同源性 抗生素 计算生物学 微生物学 生物化学 医学 肽序列 基因 护理部
作者
Sheng Chen,Qipeng Cheng,Ping Zeng,Edward Wai Chi Chan
出处
期刊:Current Pharmaceutical Design [Bentham Science]
卷期号:28 (44): 3538-3545 被引量:2
标识
DOI:10.2174/1381612828666220929154255
摘要

Abstract: Global dissemination of antimicrobial resistance (AMR) not only poses a significant threat to human health, food security, and social development but also results in millions of deaths each year. In Gram-negative bacteria, the primary mechanism of resistance to β-lactam antibiotics is the production of β-lactamases, one of which is carbapenem-hydrolyzing β-lactamases known as carbapenemases. As a general scheme, these enzymes are divided into Ambler class A, B, C, and D based on their protein sequence homology. Class B β-lactamases are also known as metallo-β-lactamases (MBLs). The incidence of recovery of bacteria expressing metallo-β- lactamases (MBLs) has increased dramatically in recent years, almost reaching a pandemic proportion. MBLs can be further divided into three subclasses (B1, B2, and B3) based on the homology of protein sequences as well as the differences in zinc coordination. The development of inhibitors is one effective strategy to suppress the activities of MBLs and restore the activity of β-lactam antibiotics. Although thousands of MBL inhibitors have been reported, none have been approved for clinical use. This review describes the clinical application potential of peptide-based drugs that exhibit inhibitory activity against MBLs identified in past decades. In this report, peptide-based inhibitors of MBLs are divided into several groups based on the mode of action, highlighting compounds of promising properties that are suitable for further advancement. We discuss how traditional computational tools, such as in silico screening and molecular docking, along with new methods, such as deep learning and machine learning, enable a more accurate and efficient design of peptide-based inhibitors of MBLs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucky.完成签到 ,获得积分0
1秒前
Jack完成签到 ,获得积分10
1秒前
痴情的明辉完成签到 ,获得积分10
2秒前
糖醋里脊加醋完成签到,获得积分10
3秒前
抽疯的电风扇13完成签到 ,获得积分10
3秒前
Enchanted完成签到 ,获得积分10
4秒前
5秒前
wang完成签到,获得积分10
6秒前
耍酷鼠标完成签到 ,获得积分0
6秒前
火星的雪完成签到 ,获得积分10
6秒前
tejing1158完成签到 ,获得积分10
7秒前
兰月满楼完成签到 ,获得积分10
7秒前
w934420513完成签到 ,获得积分10
9秒前
葛怀锐完成签到 ,获得积分10
10秒前
快乐排骨汤完成签到 ,获得积分10
13秒前
科研嘉完成签到,获得积分10
14秒前
可爱的小桃完成签到,获得积分10
15秒前
leave完成签到,获得积分10
15秒前
Jasper应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得10
18秒前
18秒前
ding应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
善学以致用应助包李采纳,获得10
18秒前
今后应助过时的起眸采纳,获得10
18秒前
111完成签到 ,获得积分10
21秒前
kai chen完成签到 ,获得积分0
23秒前
清逸完成签到 ,获得积分10
23秒前
脑洞疼应助谷歌采纳,获得10
24秒前
Huang2547完成签到 ,获得积分10
24秒前
过时的起眸完成签到,获得积分20
26秒前
28秒前
斐然诗完成签到 ,获得积分10
28秒前
28秒前
陈尹蓝完成签到 ,获得积分10
28秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136919
求助须知:如何正确求助?哪些是违规求助? 2787893
关于积分的说明 7783734
捐赠科研通 2443946
什么是DOI,文献DOI怎么找? 1299534
科研通“疑难数据库(出版商)”最低求助积分说明 625464
版权声明 600954