Review on computer vision-based crack detection and quantification methodologies for civil structures

计算机科学 建筑工程 法律工程学 结构工程 工程类 人工智能
作者
Jianghua Deng,Amardeep Singh,Yiyi Zhou,Ye Lü,Vincent C. S. Lee
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:356: 129238-129238 被引量:101
标识
DOI:10.1016/j.conbuildmat.2022.129238
摘要

• Image-based approaches for crack analysis in civil structures are reviewed. • Learning-based methods for qualitative crack detection are systematically evaluated. • Crack classification, region localisation, and attention detection are higlighted. • Supervised and unsupervised crack detection methods are reviewed. • Pixel-level segmentation methods for crack quantitative evaluation are presented. Computer vision-based crack analysis for civil infrastructure has become popular to automatically process inspection imaging data for crack detection, localisation and quantification. Some literature reviews have been conducted, which mostly focus on qualitative damage evaluation or damage segmentation, missing the methodology categorisation for applicability-oriented quantitative crack assessment. To fill the gap, this review provides a comprehensive overview of state-of-the-art image-based crack analysis under various conditions in both qualitative and quantitative aspects, particularly focusing on image processing and deep learning-based methodologies from image-level detection to pixel-level segmentation and quantification. The key challenges and research gaps are also discussed as follows, which indicate the importance of future research: (1) developing data model methodologies to resolve the difficulties due to the image data deficiency; (2) building a learning-based model capable of processing data with complex backgrounds; (3) enhancing the scene generalisation on different detection tasks; (4) establishing a lightweight mechanism for real-time crack analysis; (5) constructing learning-based systems that comprehend the local and global contexts during crack evaluation; (6) developing a semi-supervised mechanism for more information capturing and (7) establishing attention-based models for enhanced segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pinkdon完成签到,获得积分10
刚刚
5477完成签到,获得积分10
刚刚
1秒前
lins完成签到,获得积分20
1秒前
Orange应助cindy采纳,获得10
2秒前
2秒前
phz完成签到,获得积分10
2秒前
3秒前
所所应助积极的凌波采纳,获得10
3秒前
SV关注了科研通微信公众号
3秒前
白蕲完成签到,获得积分10
4秒前
调研昵称发布了新的文献求助20
4秒前
柔弱凡松发布了新的文献求助10
5秒前
yyds完成签到,获得积分10
6秒前
认真子默完成签到,获得积分10
6秒前
6秒前
6秒前
mylian完成签到,获得积分10
6秒前
8秒前
8秒前
SY发布了新的文献求助10
8秒前
可爱小哪吒完成签到,获得积分10
8秒前
斯文败类应助doudou采纳,获得10
9秒前
苹果完成签到,获得积分10
9秒前
9秒前
一颗咸蛋黄完成签到 ,获得积分20
11秒前
打打应助5477采纳,获得10
11秒前
灵巧坤发布了新的文献求助30
11秒前
11秒前
小猴完成签到,获得积分10
12秒前
Raymond应助NANA采纳,获得10
13秒前
Sean完成签到 ,获得积分10
13秒前
13秒前
无情山水发布了新的文献求助10
14秒前
锦纹完成签到,获得积分10
14秒前
南桥发布了新的文献求助10
14秒前
14秒前
伶俐的书白完成签到,获得积分10
15秒前
科研通AI5应助威武诺言采纳,获得10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762