Review on computer vision-based crack detection and quantification methodologies for civil structures

计算机科学 建筑工程 法律工程学 结构工程 工程类 人工智能
作者
Jianghua Deng,Amardeep Singh,Yiyi Zhou,Ye Lü,Vincent C. S. Lee
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:356: 129238-129238 被引量:120
标识
DOI:10.1016/j.conbuildmat.2022.129238
摘要

• Image-based approaches for crack analysis in civil structures are reviewed. • Learning-based methods for qualitative crack detection are systematically evaluated. • Crack classification, region localisation, and attention detection are higlighted. • Supervised and unsupervised crack detection methods are reviewed. • Pixel-level segmentation methods for crack quantitative evaluation are presented. Computer vision-based crack analysis for civil infrastructure has become popular to automatically process inspection imaging data for crack detection, localisation and quantification. Some literature reviews have been conducted, which mostly focus on qualitative damage evaluation or damage segmentation, missing the methodology categorisation for applicability-oriented quantitative crack assessment. To fill the gap, this review provides a comprehensive overview of state-of-the-art image-based crack analysis under various conditions in both qualitative and quantitative aspects, particularly focusing on image processing and deep learning-based methodologies from image-level detection to pixel-level segmentation and quantification. The key challenges and research gaps are also discussed as follows, which indicate the importance of future research: (1) developing data model methodologies to resolve the difficulties due to the image data deficiency; (2) building a learning-based model capable of processing data with complex backgrounds; (3) enhancing the scene generalisation on different detection tasks; (4) establishing a lightweight mechanism for real-time crack analysis; (5) constructing learning-based systems that comprehend the local and global contexts during crack evaluation; (6) developing a semi-supervised mechanism for more information capturing and (7) establishing attention-based models for enhanced segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助cancan采纳,获得10
1秒前
小羊发布了新的文献求助10
1秒前
顾矜应助青筠采纳,获得10
1秒前
明理听云完成签到,获得积分10
2秒前
JJJ发布了新的文献求助10
3秒前
小马甲应助spark采纳,获得10
4秒前
愚人发布了新的文献求助10
4秒前
5秒前
6秒前
果冻完成签到,获得积分10
8秒前
畅快友儿完成签到,获得积分10
8秒前
奶斯完成签到,获得积分10
11秒前
小小发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
子清发布了新的文献求助10
14秒前
Mic应助安冉然采纳,获得50
15秒前
muyongxin发布了新的文献求助10
15秒前
16秒前
avalanche应助ASDq采纳,获得20
17秒前
17秒前
星辰大海应助kk采纳,获得10
17秒前
大胆一刀发布了新的文献求助10
17秒前
18秒前
JJJ完成签到,获得积分10
19秒前
Signs完成签到 ,获得积分10
19秒前
愚人完成签到,获得积分10
19秒前
开心的芒果完成签到,获得积分10
20秒前
cancan发布了新的文献求助10
20秒前
研友_ngKyqn完成签到,获得积分10
20秒前
纯真以晴完成签到,获得积分10
20秒前
Owen应助甘特采纳,获得10
20秒前
ww发布了新的文献求助10
21秒前
couletian完成签到 ,获得积分10
21秒前
小小完成签到,获得积分10
22秒前
顾矜应助开朗紫采纳,获得10
22秒前
fff发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424665
求助须知:如何正确求助?哪些是违规求助? 4539081
关于积分的说明 14164862
捐赠科研通 4456109
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435127
关于科研通互助平台的介绍 1412469