Review on computer vision-based crack detection and quantification methodologies for civil structures

计算机科学 建筑工程 法律工程学 结构工程 工程类 人工智能
作者
Jianghua Deng,Amardeep Singh,Yiyi Zhou,Ye Lü,Vincent C. S. Lee
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:356: 129238-129238 被引量:79
标识
DOI:10.1016/j.conbuildmat.2022.129238
摘要

• Image-based approaches for crack analysis in civil structures are reviewed. • Learning-based methods for qualitative crack detection are systematically evaluated. • Crack classification, region localisation, and attention detection are higlighted. • Supervised and unsupervised crack detection methods are reviewed. • Pixel-level segmentation methods for crack quantitative evaluation are presented. Computer vision-based crack analysis for civil infrastructure has become popular to automatically process inspection imaging data for crack detection, localisation and quantification. Some literature reviews have been conducted, which mostly focus on qualitative damage evaluation or damage segmentation, missing the methodology categorisation for applicability-oriented quantitative crack assessment. To fill the gap, this review provides a comprehensive overview of state-of-the-art image-based crack analysis under various conditions in both qualitative and quantitative aspects, particularly focusing on image processing and deep learning-based methodologies from image-level detection to pixel-level segmentation and quantification. The key challenges and research gaps are also discussed as follows, which indicate the importance of future research: (1) developing data model methodologies to resolve the difficulties due to the image data deficiency; (2) building a learning-based model capable of processing data with complex backgrounds; (3) enhancing the scene generalisation on different detection tasks; (4) establishing a lightweight mechanism for real-time crack analysis; (5) constructing learning-based systems that comprehend the local and global contexts during crack evaluation; (6) developing a semi-supervised mechanism for more information capturing and (7) establishing attention-based models for enhanced segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布鲁鲁发布了新的文献求助20
刚刚
张张发布了新的文献求助10
刚刚
刚刚
闪闪凝冬完成签到,获得积分10
刚刚
迷路世立完成签到,获得积分10
1秒前
闫伊森完成签到,获得积分10
1秒前
九湖夷上发布了新的文献求助10
2秒前
tll完成签到,获得积分10
3秒前
3秒前
111111111222发布了新的文献求助10
4秒前
轻松夜白发布了新的文献求助10
4秒前
敏感小夏完成签到,获得积分20
5秒前
多宝鱼儿发布了新的文献求助10
5秒前
苏唱完成签到 ,获得积分10
6秒前
陪你长大完成签到,获得积分10
6秒前
8秒前
余姓懒完成签到,获得积分10
8秒前
8秒前
oydent完成签到,获得积分10
9秒前
九湖夷上完成签到,获得积分10
10秒前
11秒前
善学以致用应助Rapunzel采纳,获得10
11秒前
12秒前
13秒前
CipherSage应助!!!采纳,获得10
13秒前
善学以致用应助DD采纳,获得10
14秒前
羊羊羊完成签到,获得积分10
14秒前
bkagyin应助111111111222采纳,获得10
14秒前
15秒前
杨振发布了新的文献求助10
16秒前
16秒前
丘比特应助KKKhuan采纳,获得10
17秒前
Lizzy发布了新的文献求助10
18秒前
敏感小夏发布了新的文献求助30
18秒前
19秒前
烤肠发布了新的文献求助10
19秒前
合适靖儿完成签到 ,获得积分10
20秒前
20秒前
21秒前
pluto应助怕黑凤妖采纳,获得10
21秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229089
求助须知:如何正确求助?哪些是违规求助? 2876882
关于积分的说明 8196780
捐赠科研通 2544248
什么是DOI,文献DOI怎么找? 1374200
科研通“疑难数据库(出版商)”最低求助积分说明 646906
邀请新用户注册赠送积分活动 621693