已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Review on computer vision-based crack detection and quantification methodologies for civil structures

计算机科学 建筑工程 法律工程学 结构工程 工程类 人工智能
作者
Jianghua Deng,Amardeep Singh,Yiyi Zhou,Ye Lü,Vincent C. S. Lee
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:356: 129238-129238 被引量:120
标识
DOI:10.1016/j.conbuildmat.2022.129238
摘要

• Image-based approaches for crack analysis in civil structures are reviewed. • Learning-based methods for qualitative crack detection are systematically evaluated. • Crack classification, region localisation, and attention detection are higlighted. • Supervised and unsupervised crack detection methods are reviewed. • Pixel-level segmentation methods for crack quantitative evaluation are presented. Computer vision-based crack analysis for civil infrastructure has become popular to automatically process inspection imaging data for crack detection, localisation and quantification. Some literature reviews have been conducted, which mostly focus on qualitative damage evaluation or damage segmentation, missing the methodology categorisation for applicability-oriented quantitative crack assessment. To fill the gap, this review provides a comprehensive overview of state-of-the-art image-based crack analysis under various conditions in both qualitative and quantitative aspects, particularly focusing on image processing and deep learning-based methodologies from image-level detection to pixel-level segmentation and quantification. The key challenges and research gaps are also discussed as follows, which indicate the importance of future research: (1) developing data model methodologies to resolve the difficulties due to the image data deficiency; (2) building a learning-based model capable of processing data with complex backgrounds; (3) enhancing the scene generalisation on different detection tasks; (4) establishing a lightweight mechanism for real-time crack analysis; (5) constructing learning-based systems that comprehend the local and global contexts during crack evaluation; (6) developing a semi-supervised mechanism for more information capturing and (7) establishing attention-based models for enhanced segmentation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助yyyrrr采纳,获得10
刚刚
上官若男应助yyyrrr采纳,获得10
刚刚
2秒前
血橙发布了新的文献求助10
2秒前
bluecat完成签到,获得积分10
4秒前
赘婿应助温暖白容采纳,获得10
4秒前
完美世界应助EachannyChanny采纳,获得10
5秒前
黄大仙完成签到 ,获得积分10
6秒前
威武白薇发布了新的文献求助10
6秒前
迷人的天抒应助xxxllllll采纳,获得10
7秒前
研友_VZG7GZ应助gyl采纳,获得10
7秒前
刘根完成签到,获得积分20
8秒前
LuckyJ_Jia发布了新的文献求助10
8秒前
10秒前
10秒前
yyyrrr完成签到,获得积分10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
13秒前
狗蛋完成签到,获得积分10
13秒前
刘根发布了新的文献求助10
14秒前
15秒前
嘿嘿嘿侦探社完成签到,获得积分10
15秒前
15秒前
16秒前
lulu完成签到 ,获得积分10
16秒前
18秒前
温暖白容发布了新的文献求助10
18秒前
xue给xue的求助进行了留言
19秒前
March完成签到,获得积分10
22秒前
22秒前
虚幻采枫完成签到,获得积分10
23秒前
24秒前
24秒前
JamesPei应助LL采纳,获得10
24秒前
香蕉觅云应助小白果果采纳,获得10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968054
求助须知:如何正确求助?哪些是违规求助? 3513070
关于积分的说明 11166367
捐赠科研通 3248263
什么是DOI,文献DOI怎么找? 1794174
邀请新用户注册赠送积分活动 874892
科研通“疑难数据库(出版商)”最低求助积分说明 804629