Improvement of Prediction Models for Nondestructive Detection of TVB-N Using Dual-Band Vis/NIR Spectroscopic Technique

偏最小二乘回归 蒙特卡罗方法 谱线 近红外光谱 采样(信号处理) 光谱带 光谱学 数学 光学 生物系统 分析化学(期刊) 统计 化学 物理 探测器 生物 量子力学 色谱法 天文
作者
Wenxiu Wang,Yankun Peng
出处
期刊:Transactions of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:60 (4): 1075-1082 被引量:4
标识
DOI:10.13031/trans.12092
摘要

Abstract. This article discusses the influence of light source and band selection on prediction model performance. Two spectra acquisition systems for visible (Vis) and near-infrared (NIR) spectroscopy with a ring light source and a point light source were set up and compared based on the coefficient of variation (CV), signal-to-noise ratio (SNR), spectrum area change rate (ACR), and model results. Reflectance spectra of 61 pork samples were collected, and anomalous samples were eliminated by Monte Carlo method based on model cluster analysis. Partial least squares (PLS) models for total volatile basic nitrogen (TVB-N) based on a single spectral region (350-1100 nm or 1000-2500 nm) and a dual spectral region (350-2500 nm) were built to compare the influence of band choice. Based on the optimal chosen band, characteristic wavelengths were selected by competitive adaptive reweighted sampling (CARS), and a new PLS model was established. The results showed that spectra acquired with the ring light source had better stability and achieved optimal prediction models. The dual spectral region, which contained more comprehensive information on TVB-N, yielded better results than any single spectral region. Based on the dual-band spectra, a simplified PLS model using feature variables achieved a coefficient of determination in the prediction set (R p 2 ) of 0.8767 and standard error of prediction (SEP) of 2.8354 mg per 100 g. The results demonstrated that the choice of light source and modeling band had great influence on prediction results, and improvement of models would promote the application of Vis/NIR spectroscopy in on-line or portable detection. Keywords: Band selection, Light source, Nondestructive detection, Pork, TVB-N, Vis/NIR spectroscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助就这采纳,获得10
2秒前
田纳西河完成签到,获得积分10
4秒前
4秒前
天天快乐应助答辩采纳,获得10
4秒前
hujushan完成签到,获得积分10
5秒前
6秒前
SciGPT应助陈文文采纳,获得10
6秒前
7秒前
8秒前
xzl完成签到 ,获得积分0
9秒前
9秒前
FRANKFANG发布了新的文献求助80
10秒前
俏皮秋双发布了新的文献求助10
10秒前
HEISITATION发布了新的文献求助10
12秒前
cowboy007发布了新的文献求助10
12秒前
13秒前
Penny关注了科研通微信公众号
15秒前
就这发布了新的文献求助10
15秒前
思源应助cowboy007采纳,获得10
17秒前
17秒前
里海怪物完成签到,获得积分20
18秒前
FashionBoy应助毕道天采纳,获得10
18秒前
俏皮秋双完成签到,获得积分20
18秒前
南湖大道的五三八完成签到,获得积分10
18秒前
劲秉应助苏大强采纳,获得30
18秒前
悠扬完成签到,获得积分20
20秒前
高高发布了新的文献求助10
22秒前
齐天大圣完成签到,获得积分10
24秒前
25秒前
msirtx完成签到,获得积分10
26秒前
27秒前
NexusExplorer应助轩然采纳,获得10
31秒前
31秒前
31秒前
31秒前
悠扬发布了新的文献求助30
32秒前
夏爽2023完成签到,获得积分10
33秒前
嘟噜发布了新的文献求助10
33秒前
34秒前
34秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3255681
求助须知:如何正确求助?哪些是违规求助? 2897930
关于积分的说明 8299014
捐赠科研通 2567077
什么是DOI,文献DOI怎么找? 1394164
科研通“疑难数据库(出版商)”最低求助积分说明 652757
邀请新用户注册赠送积分活动 630414