Improvement of Prediction Models for Nondestructive Detection of TVB-N Using Dual-Band Vis/NIR Spectroscopic Technique

偏最小二乘回归 蒙特卡罗方法 谱线 近红外光谱 采样(信号处理) 光谱带 光谱学 数学 光学 生物系统 分析化学(期刊) 统计 化学 物理 量子力学 天文 探测器 生物 色谱法
作者
Wenxiu Wang,Yankun Peng
出处
期刊:Transactions of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:60 (4): 1075-1082 被引量:4
标识
DOI:10.13031/trans.12092
摘要

Abstract. This article discusses the influence of light source and band selection on prediction model performance. Two spectra acquisition systems for visible (Vis) and near-infrared (NIR) spectroscopy with a ring light source and a point light source were set up and compared based on the coefficient of variation (CV), signal-to-noise ratio (SNR), spectrum area change rate (ACR), and model results. Reflectance spectra of 61 pork samples were collected, and anomalous samples were eliminated by Monte Carlo method based on model cluster analysis. Partial least squares (PLS) models for total volatile basic nitrogen (TVB-N) based on a single spectral region (350-1100 nm or 1000-2500 nm) and a dual spectral region (350-2500 nm) were built to compare the influence of band choice. Based on the optimal chosen band, characteristic wavelengths were selected by competitive adaptive reweighted sampling (CARS), and a new PLS model was established. The results showed that spectra acquired with the ring light source had better stability and achieved optimal prediction models. The dual spectral region, which contained more comprehensive information on TVB-N, yielded better results than any single spectral region. Based on the dual-band spectra, a simplified PLS model using feature variables achieved a coefficient of determination in the prediction set (R p 2 ) of 0.8767 and standard error of prediction (SEP) of 2.8354 mg per 100 g. The results demonstrated that the choice of light source and modeling band had great influence on prediction results, and improvement of models would promote the application of Vis/NIR spectroscopy in on-line or portable detection. Keywords: Band selection, Light source, Nondestructive detection, Pork, TVB-N, Vis/NIR spectroscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鱼完成签到 ,获得积分20
2秒前
2秒前
guilin发布了新的文献求助10
2秒前
liyi完成签到,获得积分20
2秒前
Vermouth完成签到,获得积分10
2秒前
王小橘完成签到,获得积分10
3秒前
yck1027完成签到,获得积分10
3秒前
热情迎彤完成签到,获得积分10
4秒前
4秒前
Ttimer完成签到,获得积分10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得50
6秒前
大个应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
玄风应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
qjk发布了新的文献求助10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
8秒前
NexusExplorer应助WANGJD采纳,获得10
9秒前
我是苯宝宝完成签到,获得积分10
9秒前
10秒前
bkagyin应助黄晃晃采纳,获得10
10秒前
虚幻青曼完成签到,获得积分10
10秒前
清秀凌蝶发布了新的文献求助10
12秒前
tcf发布了新的文献求助10
12秒前
guilin完成签到,获得积分10
12秒前
沉静胜完成签到,获得积分10
13秒前
科研通AI6应助桃子采纳,获得10
13秒前
Fei_U完成签到,获得积分20
13秒前
Ava应助豆豆突采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618454
求助须知:如何正确求助?哪些是违规求助? 4703358
关于积分的说明 14922268
捐赠科研通 4757546
什么是DOI,文献DOI怎么找? 2550099
邀请新用户注册赠送积分活动 1512920
关于科研通互助平台的介绍 1474299