Improvement of Prediction Models for Nondestructive Detection of TVB-N Using Dual-Band Vis/NIR Spectroscopic Technique

偏最小二乘回归 蒙特卡罗方法 谱线 近红外光谱 采样(信号处理) 光谱带 光谱学 数学 光学 生物系统 分析化学(期刊) 统计 化学 物理 量子力学 天文 探测器 生物 色谱法
作者
Wenxiu Wang,Yankun Peng
出处
期刊:Transactions of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:60 (4): 1075-1082 被引量:4
标识
DOI:10.13031/trans.12092
摘要

Abstract. This article discusses the influence of light source and band selection on prediction model performance. Two spectra acquisition systems for visible (Vis) and near-infrared (NIR) spectroscopy with a ring light source and a point light source were set up and compared based on the coefficient of variation (CV), signal-to-noise ratio (SNR), spectrum area change rate (ACR), and model results. Reflectance spectra of 61 pork samples were collected, and anomalous samples were eliminated by Monte Carlo method based on model cluster analysis. Partial least squares (PLS) models for total volatile basic nitrogen (TVB-N) based on a single spectral region (350-1100 nm or 1000-2500 nm) and a dual spectral region (350-2500 nm) were built to compare the influence of band choice. Based on the optimal chosen band, characteristic wavelengths were selected by competitive adaptive reweighted sampling (CARS), and a new PLS model was established. The results showed that spectra acquired with the ring light source had better stability and achieved optimal prediction models. The dual spectral region, which contained more comprehensive information on TVB-N, yielded better results than any single spectral region. Based on the dual-band spectra, a simplified PLS model using feature variables achieved a coefficient of determination in the prediction set (R p 2 ) of 0.8767 and standard error of prediction (SEP) of 2.8354 mg per 100 g. The results demonstrated that the choice of light source and modeling band had great influence on prediction results, and improvement of models would promote the application of Vis/NIR spectroscopy in on-line or portable detection. Keywords: Band selection, Light source, Nondestructive detection, Pork, TVB-N, Vis/NIR spectroscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
weiwei发布了新的文献求助10
刚刚
王卫应助科研通管家采纳,获得10
刚刚
今后应助zhixian采纳,获得10
刚刚
COSMAO应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
COSMAO应助科研通管家采纳,获得10
刚刚
zyx应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
COSMAO应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得100
1秒前
Owen应助科研通管家采纳,获得10
1秒前
Rookie应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
Cleo应助科研通管家采纳,获得10
1秒前
Leety完成签到 ,获得积分10
1秒前
zyx应助科研通管家采纳,获得10
1秒前
COSMAO应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
3秒前
上官若男应助张emo采纳,获得10
3秒前
研友_VZG7GZ应助战战采纳,获得10
3秒前
Yumiko完成签到,获得积分10
4秒前
InfiniteLulu完成签到,获得积分10
4秒前
robert发布了新的文献求助30
4秒前
科研通AI6应助Vic采纳,获得30
5秒前
5秒前
Jian完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524531
求助须知:如何正确求助?哪些是违规求助? 4615022
关于积分的说明 14546059
捐赠科研通 4553012
什么是DOI,文献DOI怎么找? 2495088
邀请新用户注册赠送积分活动 1475700
关于科研通互助平台的介绍 1447454