Improvement of Prediction Models for Nondestructive Detection of TVB-N Using Dual-Band Vis/NIR Spectroscopic Technique

偏最小二乘回归 蒙特卡罗方法 谱线 近红外光谱 采样(信号处理) 光谱带 光谱学 数学 光学 生物系统 分析化学(期刊) 统计 化学 物理 量子力学 天文 探测器 生物 色谱法
作者
Wenxiu Wang,Yankun Peng
出处
期刊:Transactions of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:60 (4): 1075-1082 被引量:4
标识
DOI:10.13031/trans.12092
摘要

Abstract. This article discusses the influence of light source and band selection on prediction model performance. Two spectra acquisition systems for visible (Vis) and near-infrared (NIR) spectroscopy with a ring light source and a point light source were set up and compared based on the coefficient of variation (CV), signal-to-noise ratio (SNR), spectrum area change rate (ACR), and model results. Reflectance spectra of 61 pork samples were collected, and anomalous samples were eliminated by Monte Carlo method based on model cluster analysis. Partial least squares (PLS) models for total volatile basic nitrogen (TVB-N) based on a single spectral region (350-1100 nm or 1000-2500 nm) and a dual spectral region (350-2500 nm) were built to compare the influence of band choice. Based on the optimal chosen band, characteristic wavelengths were selected by competitive adaptive reweighted sampling (CARS), and a new PLS model was established. The results showed that spectra acquired with the ring light source had better stability and achieved optimal prediction models. The dual spectral region, which contained more comprehensive information on TVB-N, yielded better results than any single spectral region. Based on the dual-band spectra, a simplified PLS model using feature variables achieved a coefficient of determination in the prediction set (R p 2 ) of 0.8767 and standard error of prediction (SEP) of 2.8354 mg per 100 g. The results demonstrated that the choice of light source and modeling band had great influence on prediction results, and improvement of models would promote the application of Vis/NIR spectroscopy in on-line or portable detection. Keywords: Band selection, Light source, Nondestructive detection, Pork, TVB-N, Vis/NIR spectroscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感动访天发布了新的文献求助10
刚刚
脑洞疼应助ling采纳,获得10
刚刚
大花2完成签到,获得积分10
1秒前
李爱国应助晴朗采纳,获得10
1秒前
2秒前
Ghiocel完成签到,获得积分10
3秒前
orixero应助酷炫大树采纳,获得10
3秒前
陈秋妮关注了科研通微信公众号
3秒前
4秒前
4秒前
恋风恋歌发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
7秒前
bwh发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
霜降发布了新的文献求助10
9秒前
9秒前
星辰大海应助swh采纳,获得10
10秒前
野云关注了科研通微信公众号
11秒前
糊涂pipi完成签到,获得积分10
11秒前
写了能发发布了新的文献求助10
11秒前
Soulmate发布了新的文献求助10
12秒前
wangqinlei完成签到 ,获得积分10
12秒前
13秒前
胡莱完成签到,获得积分20
14秒前
PUPU完成签到,获得积分10
14秒前
15秒前
Owen应助大海采纳,获得10
16秒前
木木发布了新的文献求助150
16秒前
qing完成签到,获得积分10
16秒前
liuguanfeng完成签到,获得积分20
18秒前
朴实曼岚发布了新的文献求助10
18秒前
18秒前
19秒前
海盗船长发布了新的文献求助10
20秒前
晴朗发布了新的文献求助10
20秒前
20秒前
科研通AI6应助南星采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469451
求助须知:如何正确求助?哪些是违规求助? 4572568
关于积分的说明 14336194
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465076
邀请新用户注册赠送积分活动 1453596
关于科研通互助平台的介绍 1428091