Discriminative information restoration and extraction for weakly supervised low-resolution fine-grained image recognition

判别式 人工智能 计算机科学 模式识别(心理学) 背景(考古学) 特征提取 计算机视觉 机器学习 生物 古生物学
作者
Tiantian Yan,Jian Shi,Haojie Li,Zhongxuan Luo,Zhihui Wang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:127: 108629-108629 被引量:7
标识
DOI:10.1016/j.patcog.2022.108629
摘要

• To the best of our knowledge, we are the first to address the issue of weakly supervised low-resolution fine-grained image recognition in an end-to-end manner. By enhancing the network’s perception of discriminative features, the necessary critical details are recovered for fine-grained recognition, so as to improve the performance of weakly supervised low-resolution fine-grained image recognition. • We propose a minimum spanning tree aggregation module to aggregate context information for each pixel by utilizing the structural characteristic of minimum spanning tree, which can help the fine-grained discriminative information restoration sub-network keep a watchful eye on discriminative fine-grained details. • We introduce a semantic relation distillation loss to help the recognition sub-network calibrate the relationship between features, which further prompts the fine-grained detail restoration sub-network to generate the unambiguous details of super-resolution images and recognition sub-network to be aware of discriminative features. • Extensive experiments are carried out on four challenging datasets (CUB-200-2011, Stanford Cars, FGVC-Aircraft and RP-281) to demonstrate the effectiveness of our framework. The existing methods of fine-grained image recognition mainly devote to learning subtle yet discriminative features from the high-resolution input. However, their performance deteriorates significantly when they are used for low quality images because a lot of discriminative details of images are missing. We propose a discriminative information restoration and extraction network, termed as DRE-Net, to address the problem of low-resolution fine-grained image recognition, which has widespread application potential, such as shelf auditing and surveillance scenarios. DRE-Net is the first framework for weakly supervised low-resolution fine-grained image recognition and consists of two sub-networks: (1) fine-grained discriminative information restoration sub-network (FDR) and (2) recognition sub-network with the semantic relation distillation loss (SRD-loss). The first module utilizes the structural characteristic of minimum spanning tree (MST) to establish context information for each pixel by employing the spatial structures between each pixel and other pixels, which can help FDR focus on and restore the critical texture details. The second module employs the SRD-loss to calibrate recognition sub-network by transferring the correct relationships between every two pixels on the feature map. Meanwhile the SRD-loss can further prompt the FDR to recover reliable and accurate fine-grained details and guide the recognition sub-network to perceive the discriminative features from the correct relationships. Extensive experiments on three benchmark datasets and one retail product dataset demonstrate the effectiveness of our proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小河鱼发布了新的文献求助50
刚刚
i黄m完成签到,获得积分20
1秒前
kyo发布了新的文献求助10
1秒前
2秒前
wp完成签到,获得积分10
2秒前
ALUCK发布了新的文献求助10
3秒前
3秒前
rmrggy发布了新的文献求助10
4秒前
Han发布了新的文献求助10
5秒前
6秒前
李健的小迷弟应助lan采纳,获得10
7秒前
上官若男应助707采纳,获得10
7秒前
隐形曼青应助三人行采纳,获得10
7秒前
777完成签到 ,获得积分10
7秒前
Owen应助ira采纳,获得10
11秒前
JRJ发布了新的文献求助10
11秒前
14秒前
莫之白发布了新的文献求助10
15秒前
烟花应助kyo采纳,获得10
15秒前
健忘扬完成签到,获得积分10
16秒前
fwx1997发布了新的文献求助10
17秒前
阿丑的小伙伴完成签到,获得积分10
17秒前
CL完成签到,获得积分10
18秒前
Snowychen完成签到,获得积分10
18秒前
18秒前
gtttt发布了新的文献求助10
19秒前
nan完成签到,获得积分10
19秒前
小焦儿完成签到,获得积分10
20秒前
Akim应助Han采纳,获得10
22秒前
22秒前
Shaynin发布了新的文献求助10
22秒前
酷波er应助SUO采纳,获得10
23秒前
25秒前
26秒前
研友_r8YgPn完成签到,获得积分10
26秒前
27秒前
27秒前
搜集达人应助fwx1997采纳,获得10
27秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959482
求助须知:如何正确求助?哪些是违规求助? 3505709
关于积分的说明 11125517
捐赠科研通 3237592
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871614
科研通“疑难数据库(出版商)”最低求助积分说明 802868