Discriminative information restoration and extraction for weakly supervised low-resolution fine-grained image recognition

判别式 人工智能 计算机科学 模式识别(心理学) 背景(考古学) 特征提取 计算机视觉 机器学习 生物 古生物学
作者
Tiantian Yan,Jian Shi,Haojie Li,Zhongxuan Luo,Zhihui Wang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:127: 108629-108629 被引量:10
标识
DOI:10.1016/j.patcog.2022.108629
摘要

• To the best of our knowledge, we are the first to address the issue of weakly supervised low-resolution fine-grained image recognition in an end-to-end manner. By enhancing the network’s perception of discriminative features, the necessary critical details are recovered for fine-grained recognition, so as to improve the performance of weakly supervised low-resolution fine-grained image recognition. • We propose a minimum spanning tree aggregation module to aggregate context information for each pixel by utilizing the structural characteristic of minimum spanning tree, which can help the fine-grained discriminative information restoration sub-network keep a watchful eye on discriminative fine-grained details. • We introduce a semantic relation distillation loss to help the recognition sub-network calibrate the relationship between features, which further prompts the fine-grained detail restoration sub-network to generate the unambiguous details of super-resolution images and recognition sub-network to be aware of discriminative features. • Extensive experiments are carried out on four challenging datasets (CUB-200-2011, Stanford Cars, FGVC-Aircraft and RP-281) to demonstrate the effectiveness of our framework. The existing methods of fine-grained image recognition mainly devote to learning subtle yet discriminative features from the high-resolution input. However, their performance deteriorates significantly when they are used for low quality images because a lot of discriminative details of images are missing. We propose a discriminative information restoration and extraction network, termed as DRE-Net, to address the problem of low-resolution fine-grained image recognition, which has widespread application potential, such as shelf auditing and surveillance scenarios. DRE-Net is the first framework for weakly supervised low-resolution fine-grained image recognition and consists of two sub-networks: (1) fine-grained discriminative information restoration sub-network (FDR) and (2) recognition sub-network with the semantic relation distillation loss (SRD-loss). The first module utilizes the structural characteristic of minimum spanning tree (MST) to establish context information for each pixel by employing the spatial structures between each pixel and other pixels, which can help FDR focus on and restore the critical texture details. The second module employs the SRD-loss to calibrate recognition sub-network by transferring the correct relationships between every two pixels on the feature map. Meanwhile the SRD-loss can further prompt the FDR to recover reliable and accurate fine-grained details and guide the recognition sub-network to perceive the discriminative features from the correct relationships. Extensive experiments on three benchmark datasets and one retail product dataset demonstrate the effectiveness of our proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mo发布了新的文献求助30
刚刚
万有引力139完成签到,获得积分10
刚刚
煎饼果子不加葱完成签到,获得积分10
1秒前
wly完成签到,获得积分10
1秒前
2秒前
SBoot完成签到,获得积分10
5秒前
5秒前
善学以致用应助ANTI采纳,获得10
5秒前
5秒前
小猪坨完成签到,获得积分10
6秒前
6秒前
坦率问枫完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
茹茹完成签到 ,获得积分10
6秒前
无花果应助Vary采纳,获得10
7秒前
sylinmm完成签到,获得积分10
8秒前
F_ken完成签到 ,获得积分10
9秒前
9秒前
9秒前
无辜的梦竹完成签到,获得积分10
10秒前
会飞的鱼完成签到,获得积分10
10秒前
AKK发布了新的文献求助10
10秒前
melone完成签到,获得积分10
10秒前
11秒前
wanci应助嘿嘿采纳,获得10
11秒前
柳叶发布了新的文献求助10
13秒前
吴未发布了新的文献求助10
14秒前
14秒前
耶耶发布了新的文献求助10
14秒前
有生之年完成签到,获得积分10
14秒前
15秒前
仰泳鲫鱼发布了新的文献求助30
15秒前
小鹅完成签到,获得积分10
16秒前
Lee发布了新的文献求助10
19秒前
19秒前
20秒前
宫戚戚完成签到 ,获得积分10
21秒前
22秒前
22秒前
微弱de胖头完成签到,获得积分10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742602
求助须知:如何正确求助?哪些是违规求助? 5409228
关于积分的说明 15345305
捐赠科研通 4883751
什么是DOI,文献DOI怎么找? 2625329
邀请新用户注册赠送积分活动 1574165
关于科研通互助平台的介绍 1531093