Discriminative information restoration and extraction for weakly supervised low-resolution fine-grained image recognition

判别式 人工智能 计算机科学 模式识别(心理学) 背景(考古学) 特征提取 计算机视觉 机器学习 生物 古生物学
作者
Tiantian Yan,Jian Shi,Haojie Li,Zhongxuan Luo,Zhihui Wang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:127: 108629-108629 被引量:7
标识
DOI:10.1016/j.patcog.2022.108629
摘要

• To the best of our knowledge, we are the first to address the issue of weakly supervised low-resolution fine-grained image recognition in an end-to-end manner. By enhancing the network’s perception of discriminative features, the necessary critical details are recovered for fine-grained recognition, so as to improve the performance of weakly supervised low-resolution fine-grained image recognition. • We propose a minimum spanning tree aggregation module to aggregate context information for each pixel by utilizing the structural characteristic of minimum spanning tree, which can help the fine-grained discriminative information restoration sub-network keep a watchful eye on discriminative fine-grained details. • We introduce a semantic relation distillation loss to help the recognition sub-network calibrate the relationship between features, which further prompts the fine-grained detail restoration sub-network to generate the unambiguous details of super-resolution images and recognition sub-network to be aware of discriminative features. • Extensive experiments are carried out on four challenging datasets (CUB-200-2011, Stanford Cars, FGVC-Aircraft and RP-281) to demonstrate the effectiveness of our framework. The existing methods of fine-grained image recognition mainly devote to learning subtle yet discriminative features from the high-resolution input. However, their performance deteriorates significantly when they are used for low quality images because a lot of discriminative details of images are missing. We propose a discriminative information restoration and extraction network, termed as DRE-Net, to address the problem of low-resolution fine-grained image recognition, which has widespread application potential, such as shelf auditing and surveillance scenarios. DRE-Net is the first framework for weakly supervised low-resolution fine-grained image recognition and consists of two sub-networks: (1) fine-grained discriminative information restoration sub-network (FDR) and (2) recognition sub-network with the semantic relation distillation loss (SRD-loss). The first module utilizes the structural characteristic of minimum spanning tree (MST) to establish context information for each pixel by employing the spatial structures between each pixel and other pixels, which can help FDR focus on and restore the critical texture details. The second module employs the SRD-loss to calibrate recognition sub-network by transferring the correct relationships between every two pixels on the feature map. Meanwhile the SRD-loss can further prompt the FDR to recover reliable and accurate fine-grained details and guide the recognition sub-network to perceive the discriminative features from the correct relationships. Extensive experiments on three benchmark datasets and one retail product dataset demonstrate the effectiveness of our proposed framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大方的梦露完成签到,获得积分10
2秒前
烟花应助派大珊采纳,获得10
2秒前
万能图书馆应助陈辰采纳,获得10
2秒前
lee关注了科研通微信公众号
3秒前
都是发布了新的文献求助10
3秒前
ypeng完成签到,获得积分10
4秒前
HAHAHA完成签到,获得积分10
5秒前
务实的语风完成签到,获得积分10
5秒前
脑洞疼应助都是采纳,获得10
6秒前
丘比特应助ZS采纳,获得10
7秒前
Judy完成签到 ,获得积分10
7秒前
7秒前
药化行者完成签到,获得积分20
8秒前
9秒前
所所应助浮浮采纳,获得10
9秒前
罗_给翡冷翠的求助进行了留言
9秒前
Andrew关注了科研通微信公众号
10秒前
10秒前
发财小彤完成签到,获得积分10
11秒前
朴实的面包完成签到 ,获得积分10
11秒前
12秒前
小巧曲奇完成签到,获得积分10
12秒前
地狱跳跳虎完成签到 ,获得积分10
12秒前
英姑应助纯真的白开水采纳,获得10
13秒前
派大珊发布了新的文献求助10
14秒前
林钟望完成签到,获得积分10
14秒前
14秒前
李健应助千秋骚年采纳,获得30
15秒前
Jasper应助大民王采纳,获得10
16秒前
Raylihuang应助嘉丽的后花园采纳,获得200
16秒前
友好的小虾米完成签到,获得积分10
17秒前
只有个石头完成签到,获得积分10
18秒前
18秒前
18秒前
淡然白安发布了新的文献求助10
18秒前
19秒前
薰硝壤应助踏实的映易采纳,获得10
19秒前
yao发布了新的文献求助10
23秒前
naturehome发布了新的文献求助10
23秒前
吴帆发布了新的文献求助10
25秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082743
求助须知:如何正确求助?哪些是违规求助? 2736027
关于积分的说明 7539806
捐赠科研通 2385554
什么是DOI,文献DOI怎么找? 1264970
科研通“疑难数据库(出版商)”最低求助积分说明 612857
版权声明 597685