亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hypoxia Promotes Human Umbilical Vein Smooth Muscle Cell Phenotypic Switching via the ERK 1/2/c-fos/NF-κB Signaling Pathway

吡咯烷二硫代氨基甲酸酯 脐静脉 信号转导 血管平滑肌 骨桥蛋白 MAPK/ERK通路 膜联蛋白 细胞凋亡 细胞生物学 医学 分子生物学 生物 NF-κB 内科学 生物化学 平滑肌 体外
作者
Zhang Wan,Zhenyu Guo,Li Li,Zhenyu Shi,Ting Zhu
出处
期刊:Annals of Vascular Surgery [Elsevier]
卷期号:84: 371-380 被引量:1
标识
DOI:10.1016/j.avsg.2022.03.038
摘要

Background Vein wall hypoxia has long been suggested as a key factor for the development of varicose veins (VVs) and accumulating evidence has revealed the phenotypic transformation of vascular smooth muscle cells (VSMCs) under hypoxic conditions. However, the underlying molecular mechanisms of this process remain poorly understood. Our previous study revealed a positive correlation between c-fos expression and VSMC functional disturbance of VVs. This study aimed to further explore the role of c-fos in the phenotypic switching of VSMCs under hypoxic conditions. Methods Human umbilical vein smooth muscle cells (HUVSMCs) were cultured under hypoxia or normoxia. PD0325901 (10 μmol/L) and pyrrolidine dithiocarbamate (PDTC) (10 μmol/L) were used to inhibit the extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor-κ B (NF-κB) signaling pathways, respectively. HUVSMCs stably overexpressing c-fos were constructed to explore the underlying mechanism. The Western blot analysis was performed to detect the protein expression levels of c-fos, phosphorylated p65 (p-p65), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), osteopontin (OPN), and α-smooth muscle actin (α-SMA). Cell proliferation and migration capacity were detected by a Cell Counting Kit 8 (CCK-8) assay and a wound-healing assay, respectively. The cell apoptotic rate was determined using the Annexin V-FITC Apoptosis Detection Kit. Results Hypoxic exposure increased the expression levels of indicators of the p-ERK1/2/c-fos and NF-κB signaling pathways, which was accompanied by altered levels of phenotypic biomarkers (α-SMA and OPN). Cells exposed to hypoxia were characterized by a greater proliferative and migratory ability. No significant differences were observed in the rate of cell apoptosis between the normal group and the hypoxic group. In addition, inhibition of the ERK1/2/c-fos signaling pathway by PD0325901 (10 μmol/L) reduced the expression of inflammatory cytokines and attenuated hypoxia-mediated phenotypic transformation. Furthermore, inhibition of the NF-κB signaling pathway by PDTC (10 μmol/L) downregulated the expression level of OPN and reduced the migration of HUVSMCs under hypoxia exposure. However, pretreatment with PDTC did not suppress the expression of c-fos or cell proliferation. Finally, the introduction of exogenous c-fos in HUVSMCs induced increased protein expression levels of p-p65, COX-2, and OPN, accompanied by a remarkable increase in HUVSMC proliferation and migration. Conclusions Our research demonstrated that hypoxia could promote the phenotypic transformation of HUVSMCs partially through the ERK1/2/c-fos/NF-κB signaling pathway, which provided a novel insight into hypoxia-associated venous wall remodeling to further aid the development of a novel therapeutic target for the prevention or treatment of VVs. Vein wall hypoxia has long been suggested as a key factor for the development of varicose veins (VVs) and accumulating evidence has revealed the phenotypic transformation of vascular smooth muscle cells (VSMCs) under hypoxic conditions. However, the underlying molecular mechanisms of this process remain poorly understood. Our previous study revealed a positive correlation between c-fos expression and VSMC functional disturbance of VVs. This study aimed to further explore the role of c-fos in the phenotypic switching of VSMCs under hypoxic conditions. Human umbilical vein smooth muscle cells (HUVSMCs) were cultured under hypoxia or normoxia. PD0325901 (10 μmol/L) and pyrrolidine dithiocarbamate (PDTC) (10 μmol/L) were used to inhibit the extracellular signal-regulated kinase 1/2 (ERK1/2) and nuclear factor-κ B (NF-κB) signaling pathways, respectively. HUVSMCs stably overexpressing c-fos were constructed to explore the underlying mechanism. The Western blot analysis was performed to detect the protein expression levels of c-fos, phosphorylated p65 (p-p65), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), osteopontin (OPN), and α-smooth muscle actin (α-SMA). Cell proliferation and migration capacity were detected by a Cell Counting Kit 8 (CCK-8) assay and a wound-healing assay, respectively. The cell apoptotic rate was determined using the Annexin V-FITC Apoptosis Detection Kit. Hypoxic exposure increased the expression levels of indicators of the p-ERK1/2/c-fos and NF-κB signaling pathways, which was accompanied by altered levels of phenotypic biomarkers (α-SMA and OPN). Cells exposed to hypoxia were characterized by a greater proliferative and migratory ability. No significant differences were observed in the rate of cell apoptosis between the normal group and the hypoxic group. In addition, inhibition of the ERK1/2/c-fos signaling pathway by PD0325901 (10 μmol/L) reduced the expression of inflammatory cytokines and attenuated hypoxia-mediated phenotypic transformation. Furthermore, inhibition of the NF-κB signaling pathway by PDTC (10 μmol/L) downregulated the expression level of OPN and reduced the migration of HUVSMCs under hypoxia exposure. However, pretreatment with PDTC did not suppress the expression of c-fos or cell proliferation. Finally, the introduction of exogenous c-fos in HUVSMCs induced increased protein expression levels of p-p65, COX-2, and OPN, accompanied by a remarkable increase in HUVSMC proliferation and migration. Our research demonstrated that hypoxia could promote the phenotypic transformation of HUVSMCs partially through the ERK1/2/c-fos/NF-κB signaling pathway, which provided a novel insight into hypoxia-associated venous wall remodeling to further aid the development of a novel therapeutic target for the prevention or treatment of VVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mochi发布了新的文献求助10
3秒前
3秒前
123456发布了新的文献求助10
5秒前
吴大振完成签到,获得积分10
10秒前
情怀应助聪明念真采纳,获得10
12秒前
科研通AI2S应助三金采纳,获得10
28秒前
Tian完成签到 ,获得积分10
44秒前
55秒前
聪明念真发布了新的文献求助10
1分钟前
lim完成签到 ,获得积分10
1分钟前
1分钟前
香蕉觅云应助三金采纳,获得10
1分钟前
聪明念真完成签到,获得积分20
1分钟前
深情安青应助三金采纳,获得10
1分钟前
顺心剑身完成签到 ,获得积分10
1分钟前
打打应助mochi采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
mochi发布了新的文献求助10
2分钟前
plucky发布了新的文献求助20
2分钟前
巨型肥猫发布了新的文献求助10
2分钟前
CodeCraft应助三金采纳,获得10
2分钟前
2分钟前
shenqy发布了新的文献求助10
2分钟前
amit_弢完成签到,获得积分20
2分钟前
科研通AI5应助123456采纳,获得10
2分钟前
2分钟前
微弱de胖头完成签到,获得积分20
2分钟前
Ava应助巨型肥猫采纳,获得10
2分钟前
123456完成签到,获得积分10
2分钟前
muum完成签到,获得积分10
2分钟前
2分钟前
123456发布了新的文献求助10
2分钟前
3分钟前
甄茗完成签到 ,获得积分10
3分钟前
灭灭羊发布了新的文献求助10
3分钟前
3分钟前
CipherSage应助科研通管家采纳,获得10
3分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484408
求助须知:如何正确求助?哪些是违规求助? 3073433
关于积分的说明 9130940
捐赠科研通 2765049
什么是DOI,文献DOI怎么找? 1517559
邀请新用户注册赠送积分活动 702147
科研通“疑难数据库(出版商)”最低求助积分说明 701156