Generative machine learning for de novo drug discovery: A systematic review

计算机科学 人工智能 机器学习 可解释性 生成语法 循环神经网络 深度学习 药物发现 渲染(计算机图形) 人工神经网络 生物信息学 生物
作者
Dominic D. Martinelli
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:145: 105403-105403 被引量:103
标识
DOI:10.1016/j.compbiomed.2022.105403
摘要

Recent research on artificial intelligence indicates that machine learning algorithms can auto-generate novel drug-like molecules. Generative models have revolutionized de novo drug discovery, rendering the explorative process more efficient. Several model frameworks and input formats have been proposed to enhance the performance of intelligent algorithms in generative molecular design. In this systematic literature review of experimental articles and reviews over the last five years, machine learning models, challenges associated with computational molecule design along with proposed solutions, and molecular encoding methods are discussed. A query-based search of the PubMed, ScienceDirect, Springer, Wiley Online Library, arXiv, MDPI, bioRxiv, and IEEE Xplore databases yielded 87 studies. Twelve additional studies were identified via citation searching. Of the articles in which machine learning was implemented, six prominent algorithms were identified: long short-term memory recurrent neural networks (LSTM-RNNs), variational autoencoders (VAEs), generative adversarial networks (GANs), adversarial autoencoders (AAEs), evolutionary algorithms, and gated recurrent unit (GRU-RNNs). Furthermore, eight central challenges were designated: homogeneity of generated molecular libraries, deficient synthesizability, limited assay data, model interpretability, incapacity for multi-property optimization, incomparability, restricted molecule size, and uncertainty in model evaluation. Molecules were encoded either as strings, which were occasionally augmented using randomization, as 2D graphs, or as 3D graphs. Statistical analysis and visualization are performed to illustrate how approaches to machine learning in de novo drug design have evolved over the past five years. Finally, future opportunities and reservations are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
汉堡包应助ouyggg采纳,获得10
刚刚
冰冰发布了新的文献求助10
刚刚
背后的桐发布了新的文献求助10
1秒前
小二郎应助lzx采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
昏睡的蟠桃应助杨旭采纳,获得100
3秒前
Change_Jing完成签到,获得积分10
3秒前
3秒前
沉海发布了新的文献求助30
4秒前
4秒前
杭啊发布了新的文献求助10
5秒前
曾经电源完成签到,获得积分10
6秒前
hx完成签到 ,获得积分10
6秒前
CAOHOU应助满眼星辰采纳,获得10
6秒前
7秒前
24816848完成签到,获得积分10
7秒前
陈道哥完成签到 ,获得积分10
7秒前
8秒前
三七完成签到,获得积分10
8秒前
zifeimo发布了新的文献求助10
8秒前
科研通AI2S应助冰冰采纳,获得10
9秒前
练习时长两年半应助冰冰采纳,获得10
9秒前
Happyness应助superspace采纳,获得30
9秒前
yuHS完成签到,获得积分10
9秒前
9秒前
quan发布了新的文献求助10
10秒前
11秒前
丫丫完成签到 ,获得积分10
11秒前
11秒前
阿嘉完成签到,获得积分10
11秒前
12秒前
彳亍完成签到,获得积分10
12秒前
断数循环完成签到,获得积分10
12秒前
阳光女孩完成签到,获得积分10
12秒前
liujj完成签到,获得积分10
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635