Generative machine learning for de novo drug discovery: A systematic review

计算机科学 人工智能 机器学习 可解释性 生成语法 循环神经网络 深度学习 药物发现 渲染(计算机图形) 人工神经网络 生物信息学 生物
作者
Dominic D. Martinelli
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:145: 105403-105403 被引量:66
标识
DOI:10.1016/j.compbiomed.2022.105403
摘要

Recent research on artificial intelligence indicates that machine learning algorithms can auto-generate novel drug-like molecules. Generative models have revolutionized de novo drug discovery, rendering the explorative process more efficient. Several model frameworks and input formats have been proposed to enhance the performance of intelligent algorithms in generative molecular design. In this systematic literature review of experimental articles and reviews over the last five years, machine learning models, challenges associated with computational molecule design along with proposed solutions, and molecular encoding methods are discussed. A query-based search of the PubMed, ScienceDirect, Springer, Wiley Online Library, arXiv, MDPI, bioRxiv, and IEEE Xplore databases yielded 87 studies. Twelve additional studies were identified via citation searching. Of the articles in which machine learning was implemented, six prominent algorithms were identified: long short-term memory recurrent neural networks (LSTM-RNNs), variational autoencoders (VAEs), generative adversarial networks (GANs), adversarial autoencoders (AAEs), evolutionary algorithms, and gated recurrent unit (GRU-RNNs). Furthermore, eight central challenges were designated: homogeneity of generated molecular libraries, deficient synthesizability, limited assay data, model interpretability, incapacity for multi-property optimization, incomparability, restricted molecule size, and uncertainty in model evaluation. Molecules were encoded either as strings, which were occasionally augmented using randomization, as 2D graphs, or as 3D graphs. Statistical analysis and visualization are performed to illustrate how approaches to machine learning in de novo drug design have evolved over the past five years. Finally, future opportunities and reservations are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仁者无敌完成签到,获得积分10
3秒前
DONNYTIO完成签到,获得积分10
10秒前
冷傲菠萝完成签到 ,获得积分10
11秒前
忽忽完成签到,获得积分10
11秒前
12秒前
zhaolee完成签到 ,获得积分10
13秒前
15秒前
大模型应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
王灿灿应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
完美冷安完成签到,获得积分10
17秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
17秒前
19秒前
李健应助陨落的繁星采纳,获得10
22秒前
昱昱完成签到 ,获得积分10
22秒前
23秒前
凌云完成签到,获得积分10
23秒前
小玲仔完成签到,获得积分10
24秒前
25秒前
26秒前
le完成签到 ,获得积分10
26秒前
温暖的数据线完成签到 ,获得积分10
26秒前
123发布了新的文献求助30
26秒前
26秒前
27秒前
子清完成签到,获得积分0
27秒前
Menand发布了新的文献求助10
27秒前
流苏完成签到,获得积分10
31秒前
lzl发布了新的文献求助10
31秒前
123完成签到,获得积分10
33秒前
cc发布了新的文献求助10
33秒前
33秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139837
求助须知:如何正确求助?哪些是违规求助? 2790697
关于积分的说明 7796331
捐赠科研通 2447121
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601185