清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Generative machine learning for de novo drug discovery: A systematic review

计算机科学 人工智能 机器学习 可解释性 生成语法 循环神经网络 深度学习 药物发现 渲染(计算机图形) 人工神经网络 生物信息学 生物
作者
Dominic D. Martinelli
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:145: 105403-105403 被引量:89
标识
DOI:10.1016/j.compbiomed.2022.105403
摘要

Recent research on artificial intelligence indicates that machine learning algorithms can auto-generate novel drug-like molecules. Generative models have revolutionized de novo drug discovery, rendering the explorative process more efficient. Several model frameworks and input formats have been proposed to enhance the performance of intelligent algorithms in generative molecular design. In this systematic literature review of experimental articles and reviews over the last five years, machine learning models, challenges associated with computational molecule design along with proposed solutions, and molecular encoding methods are discussed. A query-based search of the PubMed, ScienceDirect, Springer, Wiley Online Library, arXiv, MDPI, bioRxiv, and IEEE Xplore databases yielded 87 studies. Twelve additional studies were identified via citation searching. Of the articles in which machine learning was implemented, six prominent algorithms were identified: long short-term memory recurrent neural networks (LSTM-RNNs), variational autoencoders (VAEs), generative adversarial networks (GANs), adversarial autoencoders (AAEs), evolutionary algorithms, and gated recurrent unit (GRU-RNNs). Furthermore, eight central challenges were designated: homogeneity of generated molecular libraries, deficient synthesizability, limited assay data, model interpretability, incapacity for multi-property optimization, incomparability, restricted molecule size, and uncertainty in model evaluation. Molecules were encoded either as strings, which were occasionally augmented using randomization, as 2D graphs, or as 3D graphs. Statistical analysis and visualization are performed to illustrate how approaches to machine learning in de novo drug design have evolved over the past five years. Finally, future opportunities and reservations are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
20秒前
39秒前
1分钟前
小西完成签到 ,获得积分10
1分钟前
1分钟前
逸飞发布了新的文献求助10
1分钟前
threethousand发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
ZZQ完成签到,获得积分10
2分钟前
粗暴的遥完成签到,获得积分10
2分钟前
gwbk完成签到,获得积分10
2分钟前
ZQ完成签到,获得积分10
2分钟前
threethousand完成签到,获得积分10
2分钟前
文献快到兜里来完成签到,获得积分10
2分钟前
WC驳回了kitsch应助
3分钟前
4分钟前
4分钟前
Wy发布了新的文献求助30
4分钟前
顾矜应助科研通管家采纳,获得10
4分钟前
纯洁完成签到,获得积分10
4分钟前
Wy完成签到,获得积分10
4分钟前
002完成签到,获得积分10
4分钟前
6分钟前
斗南03发布了新的文献求助10
6分钟前
斗南03完成签到,获得积分20
6分钟前
Zzz_Carlos完成签到 ,获得积分10
6分钟前
爆米花应助天真咖啡豆采纳,获得10
7分钟前
001完成签到,获得积分10
7分钟前
宇文非笑完成签到 ,获得积分10
7分钟前
胜天半子完成签到 ,获得积分10
7分钟前
7分钟前
爆米花应助科研通管家采纳,获得10
8分钟前
8分钟前
烟花应助飞快的万声采纳,获得10
8分钟前
实力不允许完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
SYLH完成签到 ,获得积分0
9分钟前
9分钟前
勤恳依霜发布了新的文献求助10
9分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729118
求助须知:如何正确求助?哪些是违规求助? 3274302
关于积分的说明 9984870
捐赠科研通 2989538
什么是DOI,文献DOI怎么找? 1640560
邀请新用户注册赠送积分活动 779249
科研通“疑难数据库(出版商)”最低求助积分说明 748145