氰钴胺
维生素B12
内科学
维生素E
内分泌学
血小板
谷胱甘肽
抗氧化剂
医学
生物
生物化学
酶
作者
Douglas Ngatuni,Peninah M. Wairagu,Ngalla Jillani,Alfred Orina Isaac,James Nyabuga Nyariki
标识
DOI:10.1016/j.sjbs.2022.03.028
摘要
Glyphosate-based herbicides (GBH) are widely used worldwide. Their negative impact on human health is a matter of debate by regulatory bodies and the public. The present study sought to determine the impact of a GBH on the vital organs; and the potential protective effects of vitamin B12 (cyanocobalamin) supplementation. Sixty white Swiss mice were randomly assigned to five treatment groups, each containing twelve mice. Group one represented the normal control; Group two mice were treated with 375 mg/kg of GBH for 56 days; Group three mice received 10 mg/kg of cyanocobalamin for 56 days; Group four mice were administered with 375 mg/kg of GBH and 10 mg/kg cyanocobalamin for 56 days and Group five received 10 mg/kg cyanocobalamin first for 7 days, then continued thereafter co-administered together with 375 mg/kg of GBH for 56 days). Oral administration of GBH induced severe anemia in mice, which was attenuated by cyanocobalamin. Moreover, GBH resulted in a very significant alteration of platelets, WBCs, and its sub-types. Once again, cyanocobalamin stabilized the levels of platelets and WBCs in the presence of GBH. GBH-induced elevation of triglycerides and HDL was nullified by the administration of cyanocobalamin. Further studies showed evidence for GBH-induced inflammation represented by an imbalance in serum levels of the TNF-α: IL-10 and IFN-γ ratios. The GBH severely depleted GSH levels in the liver. A GBH-induced rise in GSH in the kidney, lungs and brain was noted; and is an indicator of antioxidant capacity enhancement in response to a GBH-induced oxidant challenge. Moreover, cyanocobalamin supplementation abrogated GBH-induced oxidative stress as depicted by stabilized GSH levels in the liver, kidney, lungs, and brain. In the presence of cyanocobalamin, the GBH-induced liver injury depicted by elevation of AST, ALT, and bilirubin, was attenuated. From the results, we conclude that the capacity of cyanocobalamin to assuage GBH-induced inflammatory responses, hepatotoxicity, and hematological alteration as well as oxidative stress may be attributable to its antioxidant and anti-inflammatory properties. The current findings provide a solid foundation for further scrutiny of this phenomenon, with vital implications in GBH exposure and the role of potent antioxidant supplementation in the management of GBH-induced toxicity.
科研通智能强力驱动
Strongly Powered by AbleSci AI