亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Supplier Menus for Dynamic Matching in Peer-to-Peer Transportation Platforms

选择(遗传算法) 水准点(测量) 计算机科学 收入 集合(抽象数据类型) 运筹学 匹配(统计) 空格(标点符号) 业务 工程类 人工智能 大地测量学 会计 操作系统 统计 程序设计语言 地理 数学
作者
Rosemonde Ausseil,Jennifer A. Pazour,Marlin W. Ulmer
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:56 (5): 1304-1326 被引量:19
标识
DOI:10.1287/trsc.2022.1133
摘要

Peer-to-peer transportation platforms dynamically match requests (e.g., a ride, a delivery) to independent suppliers who are not employed nor controlled by the platform. Thus, the platform cannot be certain that a supplier will accept an offered request. To mitigate this selection uncertainty, a platform can offer each supplier a menu of requests to choose from. Such menus need to be created carefully because there is a trade-off between selection probability and duplicate selections. In addition to a complex decision space, supplier selection decisions are vast and have systematic implications, impacting the platform’s revenue, other suppliers’ experiences (in the form of duplicate selections), and the request waiting times. Thus, we present a multiple scenario approach, repeatedly sampling potential supplier selections, solving the corresponding two-stage decision problems, and combining the multiple different solutions through a consensus algorithm. Extensive computational results using the Chicago Region as a case study illustrate that our method outperforms a set of benchmark policies. We quantify the value of anticipating supplier selection, offering menus to suppliers, offering requests to multiple suppliers at once, and holistically generating menus with the entire system in mind. Our method leads to more balanced assignments by sacrificing some “easy wins” toward better system performance over time and for all stakeholders involved, including increased revenue for the platform, and decreased match waiting times for suppliers and requests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
领导范儿应助科研小白采纳,获得10
1秒前
少夫人发布了新的文献求助10
3秒前
AA完成签到,获得积分20
5秒前
5秒前
FashionBoy应助tree采纳,获得10
7秒前
8秒前
少夫人完成签到,获得积分10
8秒前
fdwang完成签到 ,获得积分10
11秒前
科研小白发布了新的文献求助10
15秒前
18秒前
20秒前
完美世界应助超人曼采纳,获得10
21秒前
22秒前
22秒前
24秒前
LY发布了新的文献求助10
25秒前
tree发布了新的文献求助10
25秒前
儒雅友儿发布了新的文献求助10
28秒前
抹茶麻薯发布了新的文献求助10
28秒前
CipherSage应助LY采纳,获得10
29秒前
打打应助科研小白采纳,获得10
32秒前
33秒前
33秒前
Lmyznl完成签到 ,获得积分10
34秒前
35秒前
36秒前
超人曼发布了新的文献求助10
40秒前
yuke发布了新的文献求助10
40秒前
枝头树上的布谷鸟完成签到 ,获得积分10
42秒前
43秒前
YE关闭了YE文献求助
43秒前
充电宝应助家湘采纳,获得10
43秒前
科研小白发布了新的文献求助10
48秒前
50秒前
英姑应助tree采纳,获得10
51秒前
韩韩完成签到 ,获得积分10
52秒前
爆米花应助yuke采纳,获得10
54秒前
54秒前
无花果应助vicky采纳,获得10
55秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135474
关于积分的说明 9412362
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728442
科研通“疑难数据库(出版商)”最低求助积分说明 716832