Interfacing finite elements with deep neural operators for fast multiscale modeling of mechanics problems

解算器 多尺度建模 计算机科学 有限元法 离散化 计算科学 多物理 不确定度量化 联轴节(管道) 机器学习 物理 数学 机械工程 数学分析 化学 计算化学 工程类 热力学 程序设计语言
作者
Minglang Yin,Enrui Zhang,Yue Yu,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:402: 115027-115027 被引量:57
标识
DOI:10.1016/j.cma.2022.115027
摘要

Multiscale modeling is an effective approach for investigating multiphysics systems with largely disparate size features, where models with different resolutions or heterogeneous descriptions are coupled together for predicting the system's response. The solver with lower fidelity (coarse) is responsible for simulating domains with homogeneous features, whereas the expensive high-fidelity (fine) model describes microscopic features with refined discretization, often making the overall cost prohibitively high, especially for time-dependent problems. In this work, we explore the idea of multiscale modeling with machine learning and employ DeepONet, a neural operator, as an efficient surrogate of the expensive solver. DeepONet is trained offline using data acquired from the fine solver for learning the underlying and possibly unknown fine-scale dynamics. It is then coupled with standard PDE solvers for predicting the multiscale systems with new boundary/initial conditions in the coupling stage. The proposed framework significantly reduces the computational cost of multiscale simulations since the DeepONet inference cost is negligible, facilitating readily the incorporation of a plurality of interface conditions and coupling schemes. We present various benchmarks to assess the accuracy and efficiency, including static and time-dependent problems. We also demonstrate the feasibility of coupling of a continuum model (finite element methods, FEM) with a neural operator, serving as a surrogate of a particle system (Smoothed Particle Hydrodynamics, SPH), for predicting mechanical responses of anisotropic and hyperelastic materials. What makes this approach unique is that a well-trained over-parametrized DeepONet can generalize well and make predictions at a negligible cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fezco完成签到,获得积分10
1秒前
犹豫的世倌完成签到,获得积分10
1秒前
空白格完成签到 ,获得积分10
1秒前
2秒前
完美世界应助受伤棉花糖采纳,获得10
2秒前
Daisy发布了新的文献求助10
2秒前
2秒前
简单的涵阳完成签到 ,获得积分10
2秒前
英俊的铭应助满锅采纳,获得10
2秒前
Wendy完成签到,获得积分10
2秒前
WN发布了新的文献求助10
3秒前
鲈鱼完成签到,获得积分10
3秒前
磨人的老妖精完成签到,获得积分10
4秒前
火火完成签到,获得积分10
4秒前
yy完成签到,获得积分10
4秒前
pyrene完成签到 ,获得积分10
5秒前
公冶菲鹰发布了新的文献求助10
5秒前
热热完成签到,获得积分10
5秒前
zzz完成签到 ,获得积分10
5秒前
Jared应助黎黎采纳,获得10
6秒前
6秒前
6秒前
斯文败类应助XXXXX采纳,获得10
6秒前
阿芜完成签到,获得积分10
7秒前
LV发布了新的文献求助10
7秒前
qiuxiali123发布了新的文献求助10
7秒前
7秒前
CodeCraft应助miao采纳,获得10
7秒前
7秒前
LSW完成签到 ,获得积分10
8秒前
顾矜应助IF采纳,获得30
9秒前
咸鱼咸完成签到,获得积分10
9秒前
Kauio发布了新的文献求助10
9秒前
幸运鹅47完成签到,获得积分10
9秒前
orixero应助niagvbjkhsdfvc采纳,获得10
9秒前
hanyahui完成签到,获得积分10
10秒前
eliot完成签到,获得积分10
10秒前
10秒前
Zhao_Kai发布了新的文献求助10
10秒前
爆米花应助而风不止采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005