已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Interfacing finite elements with deep neural operators for fast multiscale modeling of mechanics problems

解算器 多尺度建模 计算机科学 有限元法 离散化 计算科学 多物理 不确定度量化 联轴节(管道) 机器学习 物理 数学 机械工程 数学分析 化学 计算化学 工程类 热力学 程序设计语言
作者
Minglang Yin,Enrui Zhang,Yue Yu,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:402: 115027-115027 被引量:57
标识
DOI:10.1016/j.cma.2022.115027
摘要

Multiscale modeling is an effective approach for investigating multiphysics systems with largely disparate size features, where models with different resolutions or heterogeneous descriptions are coupled together for predicting the system's response. The solver with lower fidelity (coarse) is responsible for simulating domains with homogeneous features, whereas the expensive high-fidelity (fine) model describes microscopic features with refined discretization, often making the overall cost prohibitively high, especially for time-dependent problems. In this work, we explore the idea of multiscale modeling with machine learning and employ DeepONet, a neural operator, as an efficient surrogate of the expensive solver. DeepONet is trained offline using data acquired from the fine solver for learning the underlying and possibly unknown fine-scale dynamics. It is then coupled with standard PDE solvers for predicting the multiscale systems with new boundary/initial conditions in the coupling stage. The proposed framework significantly reduces the computational cost of multiscale simulations since the DeepONet inference cost is negligible, facilitating readily the incorporation of a plurality of interface conditions and coupling schemes. We present various benchmarks to assess the accuracy and efficiency, including static and time-dependent problems. We also demonstrate the feasibility of coupling of a continuum model (finite element methods, FEM) with a neural operator, serving as a surrogate of a particle system (Smoothed Particle Hydrodynamics, SPH), for predicting mechanical responses of anisotropic and hyperelastic materials. What makes this approach unique is that a well-trained over-parametrized DeepONet can generalize well and make predictions at a negligible cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助PPP采纳,获得30
1秒前
1秒前
大开口发布了新的文献求助10
2秒前
光亮的半山完成签到 ,获得积分10
3秒前
三月聚粮完成签到 ,获得积分10
3秒前
LUMO完成签到,获得积分10
4秒前
孙哈哈完成签到 ,获得积分10
7秒前
7秒前
微笑的严青完成签到,获得积分10
8秒前
上官若男应助麦葭采纳,获得10
8秒前
9秒前
10秒前
成懂事长发布了新的文献求助10
10秒前
11秒前
陶醉水云发布了新的文献求助10
12秒前
瑾木完成签到 ,获得积分10
13秒前
Hale完成签到,获得积分0
14秒前
14秒前
石红完成签到,获得积分10
17秒前
从容芮应助优秀灵槐采纳,获得10
18秒前
Nathan完成签到,获得积分10
19秒前
亾亾发布了新的文献求助10
20秒前
jixieshiren完成签到,获得积分10
21秒前
成懂事长完成签到,获得积分10
23秒前
jixieshiren发布了新的文献求助10
24秒前
SciGPT应助sjdenghao采纳,获得10
25秒前
25秒前
搜集达人应助科研通管家采纳,获得10
25秒前
小二郎应助科研通管家采纳,获得10
26秒前
在水一方应助科研通管家采纳,获得10
26秒前
完美世界应助Rdx采纳,获得30
26秒前
幻月完成签到,获得积分10
26秒前
研友_VZG7GZ应助onion采纳,获得30
27秒前
霸气安筠完成签到,获得积分10
27秒前
29秒前
霸气安筠发布了新的文献求助10
30秒前
31秒前
JY完成签到 ,获得积分10
32秒前
33秒前
36秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Effect of reactor temperature on FCC yield 1700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
Production Logging: Theoretical and Interpretive Elements 555
电解铜箔实用技术手册 540
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3283721
求助须知:如何正确求助?哪些是违规求助? 2921414
关于积分的说明 8406204
捐赠科研通 2592961
什么是DOI,文献DOI怎么找? 1413586
科研通“疑难数据库(出版商)”最低求助积分说明 658527
邀请新用户注册赠送积分活动 640307