Interfacing finite elements with deep neural operators for fast multiscale modeling of mechanics problems

解算器 多尺度建模 计算机科学 有限元法 离散化 计算科学 多物理 不确定度量化 联轴节(管道) 机器学习 物理 数学 机械工程 数学分析 化学 计算化学 工程类 热力学 程序设计语言
作者
Minglang Yin,Enrui Zhang,Yue Yu,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:402: 115027-115027 被引量:57
标识
DOI:10.1016/j.cma.2022.115027
摘要

Multiscale modeling is an effective approach for investigating multiphysics systems with largely disparate size features, where models with different resolutions or heterogeneous descriptions are coupled together for predicting the system's response. The solver with lower fidelity (coarse) is responsible for simulating domains with homogeneous features, whereas the expensive high-fidelity (fine) model describes microscopic features with refined discretization, often making the overall cost prohibitively high, especially for time-dependent problems. In this work, we explore the idea of multiscale modeling with machine learning and employ DeepONet, a neural operator, as an efficient surrogate of the expensive solver. DeepONet is trained offline using data acquired from the fine solver for learning the underlying and possibly unknown fine-scale dynamics. It is then coupled with standard PDE solvers for predicting the multiscale systems with new boundary/initial conditions in the coupling stage. The proposed framework significantly reduces the computational cost of multiscale simulations since the DeepONet inference cost is negligible, facilitating readily the incorporation of a plurality of interface conditions and coupling schemes. We present various benchmarks to assess the accuracy and efficiency, including static and time-dependent problems. We also demonstrate the feasibility of coupling of a continuum model (finite element methods, FEM) with a neural operator, serving as a surrogate of a particle system (Smoothed Particle Hydrodynamics, SPH), for predicting mechanical responses of anisotropic and hyperelastic materials. What makes this approach unique is that a well-trained over-parametrized DeepONet can generalize well and make predictions at a negligible cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
封妖妖完成签到,获得积分10
刚刚
1秒前
Du发布了新的文献求助10
1秒前
高脂悍婦完成签到,获得积分10
1秒前
侠医2012完成签到,获得积分0
1秒前
coke发布了新的文献求助10
1秒前
1秒前
underway发布了新的文献求助10
1秒前
1秒前
科研通AI5应助meiyugao采纳,获得10
2秒前
热心市民小红花应助夙夙采纳,获得10
2秒前
2秒前
77完成签到,获得积分10
4秒前
fksci发布了新的文献求助10
4秒前
我是老大应助XJ采纳,获得10
4秒前
5秒前
皮皮怪完成签到,获得积分10
6秒前
聪慧千万发布了新的文献求助10
6秒前
雪ノ下詩乃完成签到,获得积分10
6秒前
正直凌文完成签到,获得积分10
6秒前
LL发布了新的文献求助10
6秒前
海棠花未眠完成签到,获得积分10
8秒前
8秒前
9秒前
Happyness应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得20
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
无花果应助宋嘉新采纳,获得10
10秒前
yar应助科研通管家采纳,获得10
10秒前
Happyness应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得30
10秒前
丘比特应助liang采纳,获得30
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
yar应助科研通管家采纳,获得10
11秒前
Xiaoxiao应助科研通管家采纳,获得10
11秒前
boxi完成签到,获得积分10
11秒前
iNk应助科研通管家采纳,获得10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582