Treatment Response Prediction Using Ultrasound-Based Pre-, Post-Early, and Delta Radiomics in Neoadjuvant Chemotherapy in Breast Cancer

列线图 医学 无线电技术 乳腺癌 Lasso(编程语言) 特征选择 肿瘤科 多元统计 化疗 新辅助治疗 多元分析 人口 放射科 内科学 癌症 人工智能 机器学习 计算机科学 环境卫生 万维网
作者
Min Yang,Huan Liu,Qingli Dai,Ling Yao,Shun Zhang,Zhihong Wang,Jing Li,Qinghong Duan
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:12 被引量:18
标识
DOI:10.3389/fonc.2022.748008
摘要

To develop and validate a radiomics nomogram based on pre-treatment, early treatment ultrasound (US) radiomics features combined with clinical characteristics for early prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer.A total of 217 patients with histological results of breast cancer receiving four to eight cycles of NAC before surgery from January 2018 to December 2020 were enrolled. Patients from the study population were randomly separated into a training set (n = 152) and a validation set (n = 65) at a ratio of 7:3. A total of 788 radiomics features were extracted from each region of interest in the US image at pre-treatment baseline (radiomic signature, RS1), early treatment (after completion of two cycles of NAC, RS2) and delta radiomics (calculated between the pre-treatment and post-treatment features, Delta RS). The Max-Relevance and Min-Redundancy (mRMR) and the least absolute shrinkage and selection operator (LASSO) regression were applied for feature selection. The predictive nomogram was built based on the radiomics signature combined with clinicopathological risk factors. Discrimination, calibration, and prediction performance were further evaluated in the validation set.Of the 217 breast masses, 127 (58.5%) were responsive to NAC and 90 (41.5%) were non-responsive. Following feature selection, nine features in RS1, 11 features in RS2, and eight features in Delta RS remained. With multivariate analysis, the RS1, RS2, Delta RS, and Ki-67 expression were independently associated with breast NAC response. However, the performance of the Delta RS (AUC Delta RS = 0.743) was not higher than RS1 (AUC RS1 = 0.722, PDelta vs RS1 = 0.086) and RS2 (AUC RS2 = 0.811, PDelta vs RS2 = 0.173) with the Delong test. The nomogram incorporating RS1, RS2, and Ki-67 expression showed better predictive ability for NAC response with an area under the curve (AUC) of 0.866 in validation cohorts than either the single RS1 (AUC 0.725) or RS2 (AUC 0.793) or Ki-67 (AUC 0.643).The nomogram incorporating pre-treatment and early-treatment US radiomics features and Ki-67 expression showed good performance in terms of NAC response in breast cancer, thereby providing valuable information for individual treatment and timely adjustment of chemotherapy regimens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
要减肥完成签到,获得积分20
刚刚
1秒前
kk完成签到,获得积分10
2秒前
打打应助renyi97采纳,获得10
2秒前
毛毛弟完成签到 ,获得积分10
3秒前
寸愿完成签到,获得积分10
3秒前
俭朴夏菡完成签到,获得积分10
4秒前
几几完成签到,获得积分10
5秒前
Lyy发布了新的文献求助10
5秒前
调皮的凝旋完成签到,获得积分10
6秒前
寸愿发布了新的文献求助10
7秒前
keyanzhang完成签到 ,获得积分0
7秒前
琦琦国王完成签到,获得积分10
9秒前
淡定静白完成签到,获得积分10
13秒前
Jun应助浅浅采纳,获得10
14秒前
等待巧曼完成签到,获得积分10
15秒前
15秒前
小马甲应助zai采纳,获得10
15秒前
乐观的非笑完成签到,获得积分10
16秒前
危机的雪巧完成签到,获得积分10
16秒前
16秒前
lucky完成签到,获得积分10
17秒前
小h发布了新的文献求助10
17秒前
知栀完成签到,获得积分10
18秒前
JONY完成签到 ,获得积分10
18秒前
20秒前
自觉石头完成签到 ,获得积分10
21秒前
万里完成签到,获得积分10
21秒前
娇气的金鱼完成签到,获得积分10
23秒前
MXX发布了新的文献求助10
23秒前
zsyzxb完成签到,获得积分10
24秒前
You发布了新的文献求助10
24秒前
王闪闪完成签到,获得积分10
25秒前
刻苦羽毛完成签到 ,获得积分10
25秒前
研友_Ze0vBn完成签到,获得积分10
26秒前
27秒前
周七七完成签到,获得积分10
27秒前
可靠的老鼠完成签到,获得积分10
28秒前
细腻的寻真完成签到,获得积分10
30秒前
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162623
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900768
捐赠科研通 2473078
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175