甲烷化
催化作用
材料科学
化学工程
色散(光学)
产量(工程)
粒径
粒子(生态学)
金属
无机化学
化学
冶金
有机化学
工程类
地质学
物理
光学
海洋学
作者
Shuzhuang Sun,Hongman Sun,Shaoliang Guan,Shaojun Xu,Chunfei Wu
出处
期刊:Fuel
[Elsevier]
日期:2022-02-01
卷期号:317: 123420-123420
被引量:52
标识
DOI:10.1016/j.fuel.2022.123420
摘要
Integrated CO2 capture and methanation (ICCM) is attracting more attention to promote the reduction of CO2 emission. This work developed and applied a set of combined materials using Ru/CeO2 as catalyst and physically mixed Li, Na, K-doped MgO as adsorbent for the ICCM process. The influences of morphologies of CeO2 (rod, particle, and cube) in combined materials are investigated explicitly in terms of CO2 conversion and CH4 yield. Compared to the CeO2 with cube morphology, the CeO2 with rod and particle morphologies showed better Ru dispersion and more abundant support-metal interaction (SMI). The combined materials with rod and particle morphologies CeO2 (Ru/rod-CeO2-MgO and Ru/particle-CeO2-MgO) show more superior catalytic performance (0.33 and 0.29 mmol/g for CH4 yield and 55.7% and 59.8% for CO2 conversion, respectively) than that with Ru/cube-CeO2-MgO. Furthermore, the Ru/rod-CeO2-MgO shows excellent catalytic stability and reusability during 9 cyclic ICCM evaluations. In situ DRIFTS of Ru/CeO2-MgO revealed that the formates and dissociated CO2 (Ru-CO) might be the critical methanation intermediates in ICCM.
科研通智能强力驱动
Strongly Powered by AbleSci AI