Automatic Detection and Counting System for Pavement Cracks Based on PCGAN and YOLO-MF

跟踪(教育) 加速度 计算机科学 人工智能 计算机视觉 财产(哲学) 面子(社会学概念) 算法 模式识别(心理学) 认识论 经典力学 物理 哲学 社会学 社会科学 教育学 心理学
作者
Duo Ma,Hongyuan Fang,Niannian Wang,Chao Zhang,Jiaxiu Dong,Haobang Hu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 22166-22178 被引量:105
标识
DOI:10.1109/tits.2022.3161960
摘要

The regular detection of pavement cracks is critical for life and property security. However, existing deep learning-based methods of crack detection face difficulties in terms of data acquisition and defect counting. An automatic intelligent detection and tracking system for pavement cracks is proposed. Our system is formed of a pavement crack generative adversarial network (PCGAN) and a crack detection and tracking network called YOLO-MF. First, PCGAN is used to generate realistic crack images, to address the problem of the small number of available images. Next, YOLO-MF is developed based on an improved YOLO v3 modified by an acceleration algorithm and median flow (MF) algorithm to count the number of cracks. In a counting loop, our improved YOLO v3 detects cracks and the MF algorithm tracks the cracks detected in a video. This improved algorithm achieves the best accuracy of 98.47% and F1 score of 0.958 among other algorithms, and the precision-recall curve was close to the top right. A tiny model was developed and an acceleration algorithm was applied, which improved the detection speed by factors of five and six, respectively. In on-site measurement, three cracks were detected and tracked, and the total count was correct. Finally, the system was embedded in an intelligent device consisting of a calculating module, an automated unmanned aerial vehicle, and other components.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助kyouu采纳,获得10
刚刚
刚刚
阿明发布了新的文献求助10
刚刚
刚刚
风格化橙发布了新的文献求助10
1秒前
2秒前
拾云发布了新的文献求助10
4秒前
5秒前
5秒前
小荔枝完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
852应助犹豫三问采纳,获得10
6秒前
代阿飞发布了新的文献求助10
7秒前
大力的涵柏完成签到,获得积分20
7秒前
7秒前
曾经小伙完成签到 ,获得积分10
9秒前
呆萌的鸿煊完成签到,获得积分10
9秒前
QQ完成签到,获得积分10
9秒前
Erin发布了新的文献求助10
9秒前
高访蕊关注了科研通微信公众号
9秒前
10秒前
Ava应助ee采纳,获得10
10秒前
argal发布了新的文献求助10
11秒前
11秒前
11秒前
Yfvonne完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
CNAxiaozhu7应助包容念文采纳,获得10
15秒前
狂野的静槐完成签到,获得积分10
16秒前
16秒前
17秒前
thchiang发布了新的文献求助10
18秒前
18秒前
科目三应助chall采纳,获得10
19秒前
自由的梦蕊完成签到,获得积分10
19秒前
cosy完成签到,获得积分10
20秒前
ee发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707