Automatic Detection and Counting System for Pavement Cracks Based on PCGAN and YOLO-MF

跟踪(教育) 加速度 计算机科学 人工智能 计算机视觉 财产(哲学) 面子(社会学概念) 算法 模式识别(心理学) 认识论 经典力学 物理 哲学 社会学 社会科学 教育学 心理学
作者
Duo Ma,Hongyuan Fang,Niannian Wang,Chao Zhang,Jiaxiu Dong,Haobang Hu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 22166-22178 被引量:105
标识
DOI:10.1109/tits.2022.3161960
摘要

The regular detection of pavement cracks is critical for life and property security. However, existing deep learning-based methods of crack detection face difficulties in terms of data acquisition and defect counting. An automatic intelligent detection and tracking system for pavement cracks is proposed. Our system is formed of a pavement crack generative adversarial network (PCGAN) and a crack detection and tracking network called YOLO-MF. First, PCGAN is used to generate realistic crack images, to address the problem of the small number of available images. Next, YOLO-MF is developed based on an improved YOLO v3 modified by an acceleration algorithm and median flow (MF) algorithm to count the number of cracks. In a counting loop, our improved YOLO v3 detects cracks and the MF algorithm tracks the cracks detected in a video. This improved algorithm achieves the best accuracy of 98.47% and F1 score of 0.958 among other algorithms, and the precision-recall curve was close to the top right. A tiny model was developed and an acceleration algorithm was applied, which improved the detection speed by factors of five and six, respectively. In on-site measurement, three cracks were detected and tracked, and the total count was correct. Finally, the system was embedded in an intelligent device consisting of a calculating module, an automated unmanned aerial vehicle, and other components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
save发布了新的文献求助10
1秒前
华仔应助Chonwal采纳,获得30
1秒前
lxyy应助Dora采纳,获得10
1秒前
1秒前
邹逢源完成签到,获得积分10
2秒前
笨笨的乐驹完成签到,获得积分10
2秒前
陌上之心发布了新的文献求助10
2秒前
田様应助新八采纳,获得10
2秒前
2秒前
动人的铃铛完成签到,获得积分10
3秒前
3秒前
轻松金毛发布了新的文献求助10
3秒前
3秒前
朱莉发布了新的文献求助20
3秒前
隐形的巴豆完成签到,获得积分10
3秒前
谭耀给谭耀的求助进行了留言
4秒前
QQ发布了新的文献求助10
4秒前
kai发布了新的文献求助10
5秒前
jenningseastera应助sweat采纳,获得10
5秒前
ljforever完成签到,获得积分10
5秒前
5秒前
5秒前
zy发布了新的文献求助10
6秒前
6秒前
活泼水桃发布了新的文献求助10
6秒前
喜洋洋完成签到,获得积分10
6秒前
cst发布了新的文献求助10
6秒前
胡沐恬完成签到,获得积分10
7秒前
7秒前
2021完成签到 ,获得积分10
7秒前
jun发布了新的文献求助10
7秒前
华仔应助大白不白采纳,获得10
8秒前
ddddansu完成签到,获得积分20
9秒前
9秒前
9秒前
badada完成签到,获得积分10
9秒前
鱼香丸子应助杨wen采纳,获得20
9秒前
智勇双全发布了新的文献求助10
9秒前
科研通AI5应助weilanhaian采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4616113
求助须知:如何正确求助?哪些是违规求助? 4019457
关于积分的说明 12442484
捐赠科研通 3702637
什么是DOI,文献DOI怎么找? 2041737
邀请新用户注册赠送积分活动 1074341
科研通“疑难数据库(出版商)”最低求助积分说明 957952