Automatic Detection and Counting System for Pavement Cracks Based on PCGAN and YOLO-MF

跟踪(教育) 加速度 计算机科学 人工智能 计算机视觉 财产(哲学) 面子(社会学概念) 算法 模式识别(心理学) 认识论 经典力学 物理 哲学 社会学 社会科学 教育学 心理学
作者
Duo Ma,Hongyuan Fang,Niannian Wang,Chao Zhang,Jiaxiu Dong,Haobang Hu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 22166-22178 被引量:77
标识
DOI:10.1109/tits.2022.3161960
摘要

The regular detection of pavement cracks is critical for life and property security. However, existing deep learning-based methods of crack detection face difficulties in terms of data acquisition and defect counting. An automatic intelligent detection and tracking system for pavement cracks is proposed. Our system is formed of a pavement crack generative adversarial network (PCGAN) and a crack detection and tracking network called YOLO-MF. First, PCGAN is used to generate realistic crack images, to address the problem of the small number of available images. Next, YOLO-MF is developed based on an improved YOLO v3 modified by an acceleration algorithm and median flow (MF) algorithm to count the number of cracks. In a counting loop, our improved YOLO v3 detects cracks and the MF algorithm tracks the cracks detected in a video. This improved algorithm achieves the best accuracy of 98.47% and F1 score of 0.958 among other algorithms, and the precision-recall curve was close to the top right. A tiny model was developed and an acceleration algorithm was applied, which improved the detection speed by factors of five and six, respectively. In on-site measurement, three cracks were detected and tracked, and the total count was correct. Finally, the system was embedded in an intelligent device consisting of a calculating module, an automated unmanned aerial vehicle, and other components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
单薄乐珍完成签到 ,获得积分10
3秒前
栗悟饭完成签到,获得积分10
4秒前
Akim应助菜菜采纳,获得10
4秒前
活泼学生发布了新的文献求助10
5秒前
7秒前
我是老大应助tingting采纳,获得10
8秒前
QQQQ发布了新的文献求助10
8秒前
玲儿完成签到,获得积分10
9秒前
hlbbb完成签到 ,获得积分10
11秒前
12秒前
喜悦忆枫完成签到 ,获得积分10
14秒前
asd发布了新的文献求助10
16秒前
16秒前
13478404761完成签到 ,获得积分10
18秒前
雪上一枝蒿完成签到,获得积分10
18秒前
SciGPT应助搞怪烨伟采纳,获得10
18秒前
gggyyy发布了新的文献求助10
19秒前
方大完成签到,获得积分10
19秒前
典雅君浩完成签到,获得积分10
20秒前
23秒前
23秒前
Flyzhang完成签到,获得积分10
23秒前
刚子发布了新的文献求助10
23秒前
25秒前
XD824发布了新的文献求助10
28秒前
XS123发布了新的文献求助10
30秒前
萧水白应助一二三木偶人采纳,获得10
30秒前
平淡雪枫完成签到 ,获得积分10
30秒前
tingting发布了新的文献求助10
32秒前
siyuyu完成签到,获得积分10
32秒前
33秒前
33秒前
不配.应助科研通管家采纳,获得10
33秒前
不配.应助科研通管家采纳,获得10
33秒前
小二郎应助科研通管家采纳,获得10
33秒前
35秒前
等待八宝粥完成签到,获得积分10
36秒前
37秒前
菜菜发布了新的文献求助10
38秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791107
关于积分的说明 7797976
捐赠科研通 2447576
什么是DOI,文献DOI怎么找? 1301949
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194