重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Automatic Detection and Counting System for Pavement Cracks Based on PCGAN and YOLO-MF

跟踪(教育) 加速度 计算机科学 人工智能 计算机视觉 财产(哲学) 面子(社会学概念) 算法 模式识别(心理学) 认识论 经典力学 物理 哲学 社会学 社会科学 教育学 心理学
作者
Duo Ma,Hongyuan Fang,Niannian Wang,Chao Zhang,Jiaxiu Dong,Haobang Hu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 22166-22178 被引量:105
标识
DOI:10.1109/tits.2022.3161960
摘要

The regular detection of pavement cracks is critical for life and property security. However, existing deep learning-based methods of crack detection face difficulties in terms of data acquisition and defect counting. An automatic intelligent detection and tracking system for pavement cracks is proposed. Our system is formed of a pavement crack generative adversarial network (PCGAN) and a crack detection and tracking network called YOLO-MF. First, PCGAN is used to generate realistic crack images, to address the problem of the small number of available images. Next, YOLO-MF is developed based on an improved YOLO v3 modified by an acceleration algorithm and median flow (MF) algorithm to count the number of cracks. In a counting loop, our improved YOLO v3 detects cracks and the MF algorithm tracks the cracks detected in a video. This improved algorithm achieves the best accuracy of 98.47% and F1 score of 0.958 among other algorithms, and the precision-recall curve was close to the top right. A tiny model was developed and an acceleration algorithm was applied, which improved the detection speed by factors of five and six, respectively. In on-site measurement, three cracks were detected and tracked, and the total count was correct. Finally, the system was embedded in an intelligent device consisting of a calculating module, an automated unmanned aerial vehicle, and other components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助LiuZheng采纳,获得10
刚刚
刚刚
Joker完成签到,获得积分10
刚刚
周周周发布了新的文献求助10
刚刚
刚刚
Flex完成签到,获得积分10
1秒前
Soleven发布了新的文献求助10
1秒前
1秒前
1秒前
科目三应助咕噜采纳,获得10
1秒前
mingjing发布了新的文献求助10
1秒前
炸骐发布了新的文献求助10
2秒前
2秒前
zy完成签到,获得积分10
3秒前
冯珂完成签到 ,获得积分10
3秒前
3秒前
小鹿5460发布了新的文献求助10
3秒前
luo完成签到,获得积分10
3秒前
顾矜应助无隅采纳,获得10
4秒前
美丽佩奇完成签到 ,获得积分10
5秒前
贺六浑发布了新的文献求助30
5秒前
尧肙完成签到,获得积分20
5秒前
季忆发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
7秒前
上官若男应助坦率灵槐采纳,获得10
7秒前
7秒前
wanghao4799发布了新的文献求助10
7秒前
8秒前
yuzu完成签到 ,获得积分10
9秒前
10秒前
10秒前
风轩轩发布了新的文献求助10
10秒前
幽默尔蓝发布了新的文献求助10
10秒前
10秒前
然463完成签到 ,获得积分10
10秒前
12秒前
小陈发布了新的文献求助50
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466510
求助须知:如何正确求助?哪些是违规求助? 4570363
关于积分的说明 14324919
捐赠科研通 4496890
什么是DOI,文献DOI怎么找? 2463583
邀请新用户注册赠送积分活动 1452557
关于科研通互助平台的介绍 1427545