Automatic Detection and Counting System for Pavement Cracks Based on PCGAN and YOLO-MF

跟踪(教育) 加速度 计算机科学 人工智能 计算机视觉 财产(哲学) 面子(社会学概念) 算法 模式识别(心理学) 认识论 经典力学 物理 哲学 社会学 社会科学 教育学 心理学
作者
Duo Ma,Hongyuan Fang,Niannian Wang,Chao Zhang,Jiaxiu Dong,Haobang Hu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 22166-22178 被引量:105
标识
DOI:10.1109/tits.2022.3161960
摘要

The regular detection of pavement cracks is critical for life and property security. However, existing deep learning-based methods of crack detection face difficulties in terms of data acquisition and defect counting. An automatic intelligent detection and tracking system for pavement cracks is proposed. Our system is formed of a pavement crack generative adversarial network (PCGAN) and a crack detection and tracking network called YOLO-MF. First, PCGAN is used to generate realistic crack images, to address the problem of the small number of available images. Next, YOLO-MF is developed based on an improved YOLO v3 modified by an acceleration algorithm and median flow (MF) algorithm to count the number of cracks. In a counting loop, our improved YOLO v3 detects cracks and the MF algorithm tracks the cracks detected in a video. This improved algorithm achieves the best accuracy of 98.47% and F1 score of 0.958 among other algorithms, and the precision-recall curve was close to the top right. A tiny model was developed and an acceleration algorithm was applied, which improved the detection speed by factors of five and six, respectively. In on-site measurement, three cracks were detected and tracked, and the total count was correct. Finally, the system was embedded in an intelligent device consisting of a calculating module, an automated unmanned aerial vehicle, and other components.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
wssf756完成签到,获得积分10
刚刚
科研菜鸟发布了新的文献求助10
1秒前
110完成签到,获得积分10
1秒前
元气水牛完成签到 ,获得积分10
1秒前
赖晨靓完成签到 ,获得积分10
1秒前
Kan完成签到 ,获得积分10
1秒前
1秒前
斯文败类应助傲娇时光采纳,获得10
1秒前
无辜丹翠发布了新的文献求助10
2秒前
kun完成签到,获得积分10
2秒前
2秒前
2秒前
lizh187完成签到,获得积分10
2秒前
所所应助sweat采纳,获得10
3秒前
ling发布了新的文献求助10
3秒前
Todo完成签到 ,获得积分10
3秒前
野狼干完成签到,获得积分20
4秒前
Azhou完成签到,获得积分10
4秒前
5秒前
zjh完成签到,获得积分10
5秒前
5秒前
敏感的惜文完成签到,获得积分10
5秒前
5秒前
kyan发布了新的文献求助10
5秒前
汉堡包应助123采纳,获得10
6秒前
鳗鱼不尤完成签到,获得积分10
6秒前
wssf756发布了新的文献求助10
6秒前
wills应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
蓝天应助科研通管家采纳,获得30
6秒前
SciGPT应助科研菜鸟采纳,获得10
6秒前
Cui完成签到,获得积分10
6秒前
欢喜平凡完成签到,获得积分10
6秒前
蓝天应助科研通管家采纳,获得10
6秒前
任小萱发布了新的文献求助10
6秒前
打打应助科研通管家采纳,获得10
6秒前
yang完成签到,获得积分20
7秒前
虞无声应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006