Research progress of light and elevated temperature-induced degradation in silicon solar cells: A review

晶体硅 材料科学 太阳能电池 光伏系统 薄脆饼 单晶硅 降级(电信) 工程物理 光电子学 聚合物太阳能电池 钝化 量子点太阳电池 纳米技术 图层(电子) 电气工程 工程类
作者
Litao Ning,Lihui Song,Jun Zhang
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:912: 165120-165120 被引量:6
标识
DOI:10.1016/j.jallcom.2022.165120
摘要

At present, passivated emitter and rear cell (PERC) solar cells dominate the photovoltaic industry. However, light and elevated temperature-induced degradation (LeTID) is an important issue responsible for the reduction of PERC efficiency, which may lead to up to 16% relative performance losses in multicrystalline silicon solar cells, and this degradation occurs in almost all types of silicon wafers. Even in next-generation silicon solar cells like Tunnelling oxide passivated contact (TOPCon) and Heterojunction with Intrinsic Thin-layer (HJT) solar cells, LeTID can still cause an efficiency loss up to 1% relative. LeTID is a long process in terms of time during the whole cycle of degradation and regeneration, which will seriously affect the conversion efficiency and stability of solar modules, and hence increase the cost of electricity generated by solar cells. Furthermore, after years of research on LeTID, researchers are yet to determine the specific cause of LeTID. In this paper, we refer to specific literature, briefly describe the development history of LeTID, introduce the phenomena of LeTID in crystalline silicon solar cells, and describe its characteristics. In addition, we also analyzed the fundamental causes of LeTID, and found that the cause may be related to metal impurities or hydrogen contained in solar cells. At present, in view of the participation of hydrogen in LeTID and other existing related theories, this paper introduces several methods to inhibit LeTID in crystalline silicon. Finally, the content of this paper is summarized, and the development of solar cells in the future is prospected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠灭男完成签到,获得积分10
刚刚
刚刚
大模型应助mmqq采纳,获得10
1秒前
1秒前
zhouyou发布了新的文献求助10
2秒前
花渐开发布了新的文献求助10
2秒前
斯文败类应助liuyac采纳,获得10
2秒前
2秒前
4秒前
子车凡完成签到,获得积分10
4秒前
ding应助津津乐道采纳,获得10
4秒前
英俊的铭应助动听的涵山采纳,获得10
4秒前
xingchangrui发布了新的文献求助10
5秒前
Anonymousnake完成签到,获得积分10
5秒前
5秒前
Vivian完成签到,获得积分10
6秒前
乐观紫霜发布了新的文献求助10
6秒前
7秒前
mao发布了新的文献求助10
8秒前
9秒前
10秒前
Owen应助小冯采纳,获得10
10秒前
10秒前
11秒前
善学以致用应助失眠灭男采纳,获得10
11秒前
12秒前
nyfz2002发布了新的文献求助10
12秒前
conniechen完成签到 ,获得积分10
12秒前
gggg发布了新的文献求助10
12秒前
huangbing123发布了新的文献求助10
13秒前
ddd完成签到,获得积分20
13秒前
@小小搬砖瑞完成签到,获得积分10
13秒前
ladyguagua发布了新的文献求助20
13秒前
华仔应助小周周采纳,获得10
14秒前
xingchangrui完成签到,获得积分20
14秒前
14秒前
无花果应助阿文采纳,获得10
14秒前
14秒前
美女完成签到 ,获得积分10
15秒前
思源应助平常的无极采纳,获得10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144189
求助须知:如何正确求助?哪些是违规求助? 2795795
关于积分的说明 7816709
捐赠科研通 2451879
什么是DOI,文献DOI怎么找? 1304729
科研通“疑难数据库(出版商)”最低求助积分说明 627286
版权声明 601419