已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Developing a Genetic Biomarker-based Diagnostic Model for Major Depressive Disorder using Random Forests and Artificial Neural Networks

随机森林 内表型 重性抑郁障碍 生物标志物 计算机科学 人工神经网络 人工智能 分类器(UML) 机器学习 计算生物学 医学 认知 生物 精神科 遗传学
作者
Zhongwen Xie,Wei Gu,Tinghong Ming
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science Publishers]
卷期号:26 (2): 424-435 被引量:5
标识
DOI:10.2174/1386207325666220404123433
摘要

The clinical diagnosis of major depressive disorder (MDD) mainly relies on subjective assessment of depression-like behaviors and clinical examination. In the present study, we aimed to develop a novel diagnostic model for specially predicting MDD.The human brain GSE102556 DataSet and the blood GSE98793 and GSE76826 Data Sets were downloaded from the Gene Expression Omnibus (GEO) database. We used a novel algorithm, random forest (RF) plus artificial neural network (ANN), to examine gene biomarkers and establish a diagnostic model of MDD.Through the "limma" package in the R language, 2653 differentially expressed genes (DEGs) were identified in the GSE102556 DataSet, and 1786 DEGs were identified in the GSE98793 DataSet, and a total of 100 shared DEGs. We applied GSE98793 TrainData 1 to an RF algorithm and thereby successfully selected 28 genes as biomarkers. Furthermore, 28 biomarkers were verified by GSE98793 TestData 1, and the performance of these biomarkers was found to be perfect. In addition, we further used an ANN algorithm to optimize the weight of each gene and employed GSE98793 TrainData 2 to build an ANN model through the neural net package by R language. Based on this algorithm, GSE98793 TestData 2 and independent blood GSE76826 were verified to correlate with MDD, with AUCs of 0.903 and 0.917, respectively.To the best of our knowledge, this is the first time that the classifier constructed via DEG biomarkers has been used as an endophenotype for MDD clinical diagnosis. Our results may provide a new entry point for the diagnosis, treatment, outcome prediction, prognosis and recurrence of MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
CC发布了新的文献求助10
3秒前
Lex发布了新的文献求助30
4秒前
丘比特应助star采纳,获得10
9秒前
9秒前
蒙豆儿完成签到,获得积分10
9秒前
12秒前
蒙豆儿发布了新的文献求助10
13秒前
Bi8Bo完成签到,获得积分20
14秒前
fusheng完成签到 ,获得积分0
17秒前
luxiaoyu发布了新的文献求助10
18秒前
科研通AI5应助蒙豆儿采纳,获得10
20秒前
浮生完成签到 ,获得积分10
21秒前
榨菜完成签到,获得积分10
23秒前
24秒前
whr完成签到,获得积分10
26秒前
26秒前
star发布了新的文献求助10
28秒前
newplayer完成签到,获得积分10
31秒前
星辰大海应助luxiaoyu采纳,获得10
31秒前
38秒前
奇异果完成签到 ,获得积分10
39秒前
40秒前
chem-w发布了新的文献求助10
41秒前
43秒前
44秒前
46秒前
Benjamin完成签到 ,获得积分10
47秒前
健壮惋清完成签到 ,获得积分10
47秒前
47秒前
CC关注了科研通微信公众号
48秒前
49秒前
G1997完成签到 ,获得积分10
49秒前
UUU完成签到 ,获得积分10
51秒前
wbs13521完成签到,获得积分0
51秒前
非蛋白呼吸商完成签到,获得积分10
52秒前
chem-w完成签到,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581296
求助须知:如何正确求助?哪些是违规求助? 3999257
关于积分的说明 12380990
捐赠科研通 3673853
什么是DOI,文献DOI怎么找? 2024781
邀请新用户注册赠送积分活动 1058580
科研通“疑难数据库(出版商)”最低求助积分说明 945299