Developing a Genetic Biomarker-based Diagnostic Model for Major Depressive Disorder using Random Forests and Artificial Neural Networks

随机森林 内表型 重性抑郁障碍 生物标志物 计算机科学 人工神经网络 人工智能 分类器(UML) 机器学习 计算生物学 医学 认知 生物 精神科 遗传学
作者
Wei Gu,Tinghong Ming,Zhongwen Xie
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science]
卷期号:26 (2): 424-435 被引量:1
标识
DOI:10.2174/1386207325666220404123433
摘要

Background: The clinical diagnosis of major depressive disorder (MDD) mainly relies on subjective assessment of depression-like behaviors and clinical examination. In the present study, we aimed to develop a novel diagnostic model for specially predicting MDD. Methods: The human brain GSE102556 DataSet and the blood GSE98793 and GSE76826 Data Sets were downloaded from the Gene Expression Omnibus (GEO) database. We used a novel algorithm, random forest (RF) plus artificial neural network (ANN), to examine gene biomarkers and establish a diagnostic model of MDD. Results: Through the “limma” package in the R language, 2653 differentially expressed genes (DEGs) were identified in the GSE102556 DataSet, and 1786 DEGs were identified in the GSE98793 DataSet, and a total of 100 shared DEGs. We applied GSE98793 TrainData 1 to an RF algorithm and thereby successfully selected 28 genes as biomarkers. Furthermore, 28 biomarkers were verified by GSE98793 TestData 1, and the performance of these biomarkers was found to be perfect. In addition, we further used an ANN algorithm to optimize the weight of each gene and employed GSE98793 TrainData 2 to build an ANN model through the neural net package by R language. Based on this algorithm, GSE98793 TestData 2 and independent blood GSE76826 were verified to correlate with MDD, with AUCs of 0.903 and 0.917, respectively. Conclusion: To the best of our knowledge, this is the first time that the classifier constructed via DEG biomarkers has been used as an endophenotype for MDD clinical diagnosis. Our results may provide a new entry point for the diagnosis, treatment, outcome prediction, prognosis and recurrence of MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小哲发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
壹号完成签到,获得积分10
3秒前
XXXXH发布了新的文献求助10
5秒前
xiaozhangzi完成签到,获得积分10
6秒前
chigga发布了新的文献求助10
6秒前
隐形曼青应助beautiful540采纳,获得20
7秒前
R喻andom发布了新的文献求助10
9秒前
9秒前
李健应助zizi采纳,获得10
10秒前
10秒前
11秒前
劲秉应助阳光照采纳,获得10
14秒前
Gyrfalcon完成签到 ,获得积分10
14秒前
一棵树发布了新的文献求助10
14秒前
不配.应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
不配.应助科研通管家采纳,获得10
15秒前
不配.应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
甜滋滋发布了新的文献求助10
15秒前
青阳完成签到,获得积分10
16秒前
多多发SCI完成签到,获得积分10
18秒前
科研通AI2S应助拼搏的秋玲采纳,获得10
19秒前
zpzz完成签到 ,获得积分10
20秒前
我一进来就看到常威在打来福完成签到,获得积分10
21秒前
小二郎应助jhnl采纳,获得10
22秒前
科研通AI2S应助111采纳,获得10
25秒前
neilphilosci完成签到 ,获得积分10
25秒前
EddyLalala给kejiwangzi的求助进行了留言
26秒前
29秒前
南宫秃完成签到,获得积分0
30秒前
32秒前
充电宝应助投石问路采纳,获得10
32秒前
32秒前
aiiLuX完成签到 ,获得积分10
33秒前
34秒前
深情依霜发布了新的文献求助10
34秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3214629
求助须知:如何正确求助?哪些是违规求助? 2863251
关于积分的说明 8137704
捐赠科研通 2529429
什么是DOI,文献DOI怎么找? 1363682
科研通“疑难数据库(出版商)”最低求助积分说明 643903
邀请新用户注册赠送积分活动 616437