Transformer Model for Functional Near-Infrared Spectroscopy Classification.

计算机科学 人工智能 功能近红外光谱 模式识别(心理学) 预处理器 卷积神经网络 联营 机器学习
作者
Zenghui Wang,Jun Zhang,Xiaochu Zhang,Peng Chen,Bing Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/jbhi.2022.3140531
摘要

Functional near-infrared spectroscopy (fNIRS) is a promising neuroimaging technology. The fNIRS classification problem has always been the focus of the brain-computer interface (BCI). Inspired by the success of Transformer based on self-attention mechanism in the fields of natural language processing and computer vision, we propose an fNIRS classification network based on Transformer, named fNIRS-T. We explore the spatial-level and channel-level representation of fNIRS signals to improve data utilization and network representation capacity. Besides, a preprocessing module, which consists of one-dimensional average pooling and layer normalization, is designed to replace filtering and baseline correction of data preprocessing. It makes fNIRS-T an end-to-end network, called fNIRS-PreT. Compared with traditional machine learning classifiers, convolutional neural network (CNN), and long short-term memory (LSTM), the proposed models obtain the best accuracy on three open-access datasets. Specifically, in the most extensive ternary classification task (30 subjects) that includes three types of overt movements, fNIRS-T, CNN, and LSTM obtain 75.49%, 72.89%, and 61.94% on test sets, respectively. Compared to traditional classifiers, fNIRS-T is at least 27.41% higher than statistical features and 6.79% higher than well-designed features. In the individual subject experiment of the ternary classification task, fNIRS-T achieves an average subject accuracy of 78.22% and surpasses CNN and LSTM by a large margin of +4.75% and +11.33%. fNIRS-PreT using raw data also achieves competitive performance to fNIRS-T. Therefore, the proposed models improve the performance of fNIRS-based BCI significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
overThat发布了新的文献求助10
1秒前
张天翔发布了新的文献求助10
1秒前
2秒前
4秒前
xslj完成签到 ,获得积分10
5秒前
机智ss完成签到,获得积分10
5秒前
棕泡泡鸡完成签到 ,获得积分10
5秒前
善学以致用应助ZQP采纳,获得10
5秒前
Yii完成签到,获得积分10
5秒前
栗子完成签到,获得积分10
6秒前
坐忘完成签到 ,获得积分10
6秒前
7秒前
调研昵称发布了新的文献求助10
7秒前
lize5493发布了新的文献求助10
7秒前
清澄发布了新的文献求助10
8秒前
8秒前
顺利毕业完成签到,获得积分10
9秒前
Yii发布了新的文献求助30
9秒前
香山叶正红完成签到 ,获得积分10
10秒前
搜集达人应助要减肥采纳,获得10
10秒前
忧郁慕青发布了新的文献求助10
11秒前
MissXia完成签到,获得积分10
11秒前
11秒前
Yolo完成签到,获得积分10
12秒前
12秒前
rosalieshi应助hzs采纳,获得30
12秒前
生动的海露完成签到,获得积分10
12秒前
华仔应助冷酷的画板采纳,获得10
13秒前
爱书儿的小周完成签到,获得积分10
13秒前
15秒前
调研昵称发布了新的文献求助10
15秒前
杨19980625发布了新的文献求助10
16秒前
ElbingX发布了新的文献求助30
17秒前
张岱帅z完成签到,获得积分10
18秒前
小程别放弃完成签到,获得积分10
18秒前
YY发布了新的文献求助10
19秒前
KK完成签到 ,获得积分10
19秒前
南桑完成签到 ,获得积分10
19秒前
忧郁慕青完成签到,获得积分10
19秒前
Joeswith完成签到,获得积分10
20秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162623
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900768
捐赠科研通 2473078
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175